Ptolemy Code Generation for Texas Instrument’s TMS320C6x

Sresth Kumar
Vikram Sardesai
Hamid Rahim Sheikh
• **Motivation**
 – Current Electronic Design Automation (EDA) tools are geared towards *implementation independent* design of heterogeneous systems.
 – *Ptolemy* is one such framework that supports simulation and code generation domains.

• **Objective**
 – To add Code Generation (CG) functionality for Texas Instrument’s TMS320C6x.
 – To evaluate performance issues of our approach versus C code generation domain (CGC).
Approach

• Derive the new domain from existing CGC domain.
• Use a library of optimized C callable assembly routines for actor functionality.
• Leverage on optimized benchmark kernels provided by Texas Instruments (TI) for common Digital Signal Processing (DSP) blocks.
Implementation

• C6xTarget for CGC.
• DSP blocks FIR, IIR, decimators & interpolators.
• Fixed-point (C62x) and Floating point (C67x) stars.
• Stars have the same constraints as TI’s optimized assembly routines.
 – Data alignment issues
 – Data length issues
Performance

- We compare performance against code generated using CGC stars.
- Cycle counts, Code Size and Data Size comparisons.
- Comparison made for Floating Point stars only for consistency.
- Different implementation structures.
- Goal: Test CD to DAT converter.
Finite Impulse Response Filters
Infinite Impulse Response Filters
<table>
<thead>
<tr>
<th></th>
<th>FIR</th>
<th>IIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycle Count</td>
<td>10x to 40x</td>
<td>4x to 18x</td>
</tr>
<tr>
<td></td>
<td>up to 66x</td>
<td>up to 40x</td>
</tr>
<tr>
<td>Code Size</td>
<td>Fixed Overhead for C6x</td>
<td>Linear overhead for CGC</td>
</tr>
<tr>
<td>Data Size</td>
<td>Linear Overhead for C6x</td>
<td>Linear overhead for CGC</td>
</tr>
</tbody>
</table>
Conclusion

• Processor complexity increasing much faster than code generation & compilation techniques.
• Compilers perform poorly when it comes to understanding the global structure of a system.
• Hand optimized library based approach is better than general C-code generation.