
LabVIEW Based Embedded Design

Sadia Malik
Ram Rajagopal

Department of Electrical and Computer Engineering
University of Texas at Austin

Austin, TX 78712
malik@ece.utexas.edu
ram.rajagopal@ni.com

Abstract

LabVIEW is a graphical programming tool based on the dataflow language G. Recently, runtime support for a
hard real time environment has become available for LabVIEW, which makes it an option for embedded system
prototyping.

Due to its characteristics, the environment presents itself as an ideal tool for both the design and
implementation of embedded software. In this project we study the design and implementation of embedded software by
using G as the specification language and the LabVIEW RT real time platform. One of the main advantages of this
approach is that the environment leads itself to a very smooth transition from design to implementation, allowing for
powerful cosimulation strategies (e.g. hardware in the loop, runtime modeling).

In order to evaluate the effectiveness and possible improvements on G as an embedded software description
language we prove that, under certain conditions and semantic restrictions, a non-terminating G program is strictly
bounded in memory. We provide a mechanism to always determine a valid G schedule. The theory formalizes the
current behavior of the G execution system, and provides insights in how to use G for embedded processing. Also we
present an O(N3) algorithm for detecting non-determinism in a G program.

Finally, we implement a state-of-the-art embedded motion control algorithm using LabVIEW as the
specification, simulation, and implementation tool.



2

1. Introduction

LabVIEW, developed by National Instruments, is a graphical programming environment based

on a dataflow model. It was originally targeted towards the test, measurement, and automation

industries.

In recent years there has been a tremendous growth in the embedded software systems market. It

was motivated by, among other factors, the reduction in the cost of hardware and the need for fast

portable solutions with short time to market. National Instruments developed LabVIEW RT (Real

Time) to answer these demands.

The objective of this project is to develop a framework for using the LabVIEW RT software and

hardware environment for embedded systems design. To define a consistent framework for

embedded design, we prove that the underlying model of computation of LabVIEW, the G

language, satisfies fundamental requirements for languages for embedded systems specification. As

an example of the advantages of using the LabVIEW embedded environment for development, we

implement an embedded motion controller using LabVIEW RT.

2. G in Embedded Design

There are many different definitions for embedded software, but an accepted one is a  system,

with extremely restricted user interface, that acts on infinite streams of data. The main desired

requirements for specifying and executing an embedded program can be listed as [P95]:

[R1] The program specification should preferably be determinate, and therefore the outputs should

be consistent to the inputs, regardless of execution details. Also, the program specification should

be sample rate consistent and causal.

[R2] The scheduler should implement a complete execution of the G program, so if the program is

non-terminating, it should not deadlock.

[R3] The scheduler should, if possible, execute a bounded G program in bounded memory.



3

These requirements are quite natural and express that a well-behaved program should be able to

operate without hurdles in standard embedded environments. In this section we will present

algorithms and restrictions that guarantee that the main requirements are met, thus allowing G to be

transparently used in embedded software design.

In order to derive our algorithms and restrictions, we will assume that for every execution of the

G program the front panel input values are fixed. This assumption is reasonable under the

hypothesis that the program is running in an embedded environment. Due to space constraints, all of

the proofs are presented in the appendix.

2.1 Determinism and Consistency

A G graph is always sample rate consistent because it is homogeneous. Also causality in G is

guaranteed, because the semantics do not allow delayless feedback loops.

Due to the language semantics [AK98], non-determinism only arises in G when local or global

(storage) variables are used as part of a diagram. Because of the fact that G allows multiple reads

and writes to a single variable, race conditions may arise.

An efficient algorithm to identify non-determinate programs in G is given in Table 1. This

algorithm is based on propositions 1 and 2 below. A flattened diagram is a G diagram where all

higher level actors are decomposed into G’s basic actors.

Proposition 1: If all actors in a flattened G diagram only read from storage variables, then the

program is determinate.

Proposition 2: If an actor A writes to a storage variable, and an actor B reads or writes to the same

storage variable, then this program can be determinate if and only if there is a directed path from

actor A to actor B or vice versa.

The procedure for creating virtual edges for G structures is presented in the appendix. The

“Find Non Determinism” algorithm is of order O(|actors|3) [CL90].



4

Find Non Determinism
Flatten the G graph.
If (no storage variable write in diagram)
    { program is determinate;}
else
{  Create virtual edges for all G structures;
    Run All pairs Shortest path
          algorithm on graph [CL90];
    For each storage variable S{

        Select a vertice AV  that writes to

               an instance of S;

  For every vertex kV  connected to an instance of  S

           {

             If (dist( AV , kV ) ∞=  and

                        dist(kV , AV )  ∞= )

                         return Program is non-determinate;
           }
   } //for storage
} //else
  return Program is determinate;

Table 1: Algorithm for identifying  non-determinate G programs

2.2 Bounded Memory Execution

A scheduler that operates in G does not need to be concerned about bounded memory

scheduling. G programs can only be either strictly bounded or unbounded in memory (proposition

3). The primary reasons are the homogeneity of the G graph and the syntax restrictions imposed by

the language.

Proposition 3: G programs are either strictly bounded or unbounded in memory [P95]. Unbounded

memory programs are defined by the use of build array actors inside while loops or having indexing

enabled for tunnels in such loops. Therefore a scheduler can always satisfy requirement R3.

A simple requirement that would force every G program to be strictly bounded in memory is

to force every while loop to have a maximum count.

2.3 Complete Execution

Because of the semantics of G, and the fact that it is homogeneous, any valid schedule

guarantees complete execution of a determinate program. There are no possible deadlocks, unless

they are introduced by the behavior of the actors (e.g. infinite while loop). Theorem 1 states that

every determinate diagram has a valid execution schedule that satisfies requirement R3. If every

loop has a maximum count, then no G program will ever deadlock.



5

Theorem 1: Given a determinate G diagram, in the sense of section 2.3.1, there is always a valid

schedule that consists of a sequential Breadth First Search [CL90] order firing of every actor on the

diagram.

2.4 G in LabVIEW RT

In many applications it maybe required that a certain periodic schedule is executed within a

hard timed loop. For example, in a digital control application hard timing is extremely important to

keep the system stable [DT97].

LabVIEW RT was developed to allow a hard timed execution of a G diagram. It is basically

an execution kernel (RT Engine) that runs the G diagram under the PharLap real time operating

system. The execution kernel is supported by a standard industrial PC (PXI) as well as by a custom

made data acquistion board. The development is done on a host computer using a standard

LabVIEW interface. The host computer is linked to the RT system for program download and user

interface update.

3. LabVIEW RT Based Embedded Motion Control

Formally, we have shown that G is adequate for embedded design (section 2). In this section

we discuss the implementation of an embedded motion controller based on G.

A typical motion control system [NI99] is presented in Figure 3. The host machine handles

the user interface and higher-level executive routines. The trajectory generator outputs position vs.

time data on the fly. This data is used by a PID (Proportional-Integral-Derivative) [DT97] control

loop to drive the plant, that could be composed of several motors (axis).

In existing systems, the control loop is programmed on a custom board and can only be

changed by rewriting the code. The key limitation of this approach is the lack of flexibility in terms



6

of algorithm and parameter ranges. Moreover, PID control limits the system performance, as it

treats every axis independently.

Next generation motion control algorithms require increased flexibility in the

implementation. Therefore, these advanced algorithms cannot be easily translated into embedded

system firmware.

   Figure 1: Current Motion Control System       Figure 2:  LabVIEW RT based System

3.1 LabVIEW based Motion Control Architecture

When compared with existing motion control architectures, our system provides an easy and

flexible control environment. The new architecture (Figure 2) encapsulates a mechanism for the

user to start with a completely unknown plant, identify it’s parameters, design a control algorithm of

his choice, and run it on real time hardware in one seamless system. This is a new paradigm in

embedded motion control.

In the new architecture, the host is still in the PC, which includes system identification

capability [DT97]. Thus a model of the plant is automatically generated based on a simple trajectory

experiment. With a model of the plant, the whole range of control algorithms can be explored

extending the capabilities of PID. We exemplified this by implementing an optimal control design

routine in the host program.

The RT system itself runs the embedded controller. The controller is a state machine that

can select between a PID algorithm for system identification and a multiple input multiple output



7

(MIMO) feedback algorithm [DT97], defined by the control design program in the host PC. In

addition, the host communicates with the RT board using a TCP/IP based protocol. This enables the

RT subsystem to be used anywhere in a distributed system and still be controlled by the host. This

adds tremendous flexibility in realistic embedded motion control systems.

The embedded controller, as well as the host program, are completely implemented in G.

The controller is implemented using a combination of Finite State Machine (FSM) and Dataflow

programs [GL99]. For the end user, such an implementation allows for adaptability, as completely

different control strategies could be programmed and easily added as a new state in the controller.

The communication and input/output infrastructure would remain the same.

Another important characteristics of the system is that the structure is such that the real plant

may be replaced by a simulated plant in software without requiring significant modifications. This

technique is called ‘Hardware in the loop’ (HIL) [HL99] and is a very popular system verification

and simulation technique. Traditional systems do not have such a well-defined and easy to use

interface that can support HIL experiments, even for user defined algorithms.

Figure 3: Control Design Cycle

Figure 3 compares the traditional design process with the new design process that becomes

available as a result of our system architecture. This comparison clearly demonstrates the reduction

in the development cost and cycle time due to the use of LabVIEW based design.

specify system
Physical model

of system

Control algorithm
design

Hardware in the
Loop Tests

Download embedded
algorithm (VI)

Control algorithm
design

Embedded System
development

Final
Implementation

LabVIEW RT

SIMULATION
ACTUAL
HARDWARE

Control model
of system

Prototype
development

LabVIEW

and interface



8

3.2 Typical Execution

In a typical scenario, the user would use the implemented system without any modifications.

The user inputs a trajectory using a GUI window. This trajectory is converted to a set of points at

defined time, using cubic spline interpolation and taking into consideration restrictions on velocity

and acceleration.

 The trajectory is sent to the RT board. The RT system will run an assumed PID algorithm to

make the system follow the desired trajectory, using the previously defined points as set points. The

actual path followed by the system and the desired trajectory are returned by the RT system, and

used by the host system identification program to determine plant model parameters. The interactive

state space control design program is then executed in the host, allowing the user to define the

controller. Then the controller can be invoked at any time by the state machine, when commanded

by the host computer.

The implemented control design routine is based on the Linear Quadratic Regulator (LQR)

and optimal control principles [DT97]. The idea is to balance the conflicting requirements of

minimum error (requiring large control signals) and minimum control effort (requiring smooth

paths, that may deviate from desired path). In keeping with this simple concept, the user interface

only includes sliders to choose the relative weighting between smoothness and accuracy.

Currently a two axis controller, that runs at approximately 1.7KHz, is supported by the

system. Some applications require control loop frequencies around 4KHz [DT97]. Improvements in

our driver infrastructure will enable our system to run at those frequencies.

3. Conclusion and Future Work

In this project we explored the application of LabVIEW RT for embedded software

development. We showed that G, the underlying model of computation, satisfies the requirements

for specifying embedded systems, under certain simple restrictions.



9

We developed an embedded motion control system as an application of LabVIEW RT for

embedded design. The main advantage that LabVIEW RT presented was the reduction of the

development cycle time, because of the common simulation and execution environment. Another

important advantage was that G allowed us to easily combine different models of computation.

The implemented motion control system includes automatic plant modeling (system

identification), MIMO control capabilities, and an innovative qualitative optimal control design

program. Moreover, our architecture implements HIL techniques for replacing real plants with

software simulated plants. The system is also very flexible, allowing the end user to access and

replace control routines.

This work can be extended to include improvements in the qualitative control design

methodology, that will allow for more generic control algorithm specifications. Moreover, the

current system identification can be extended to identify systems when there are coupled axis.

4. References

[AK98]  H. Andrade and S. Kovner, “Software Synthesis from Dataflow Models for Embedded Software Design in the
G Programming Language and the LabVIEW Development Environment”, Proc. IEEE Asilomar Conference on
Signals, Systems, and Computers, Nov. 1998, pp. 1705-1710.

[CL90]  T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms, McGraw Hill Pub. Co.,  ISBN
0070131430, 1990.

[DT97] K. Dutton, S. Thompson, and B. Barraclough, The Art of Control Engineering, Addision-Wesley Longman,
ISBN 0201175452, 1997.

[GL99]  A. Girault, B. Lee, and E. A. Lee, “Hierarchical Finite State Machines with Multiple Concurrency Models”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 18, no. 6, June 1999, pp 742-
760.

[HL99]  S. Han, M. Lee, and R.R Mohler, “Real-time implementation of a robust adaptive controller for a robotic
manipulator based on digital signal processors”, IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 29,
no. 2, March 1999, pp 194-204.

[LM87]  E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous Dataflow Programs for Digital Signal
Processing”, IEEE Transactions on Computers, vol. C-36, no. 2, Feb. 1987.

[P95] T. M. Parks, “Bounded Scheduling of Process Networks”, Technical Report UCB/ERL-95-105, University of
California at Berkeley, Berkley, CA 94720, Dec. 1995.

[NI99]  Flex Motion Software Reference Manual,National Instruments, 1999 (www.ni.com/support).


