Modeling and Simulation of Discretized Data Transmission in Very High-Speed Digital Subscriber Line

Embedded Software Systems
Final Project Presentation
April 29, 2002

Dogu Arifler, Ming Ding, and Zukang Shen
Problem Statement

• Design a Synchronous Dataflow (SDF) model for discretized data transmission in Very High-Speed Digital Subscriber Line (VDSL)
 – Create an abstraction for Discrete Multitone (DMT) based VDSL modems compliant with the standards

• Implement and simulate discretized data transmitter and receiver in an electronic design automation tool
 – Implement physical layer functional blocks
 – Open issue: Enable designers to build and optimize transceiver sub-systems without having to re-implement the whole design
Modeling the System

- Typical communication system, directly mapped to SDF
 - One token corresponds to one DMT sub-symbol (complex number)
 - “e” is the cyclic extension
 - A model that uses 512 sub-carriers

Diagram:

- **QE**: Bank of QAM encoders
- **SE**: Conjugate symmetric extension
- **IFFT**: Inverse Fast Fourier Transform
- **CE**: Cyclic extension
- **WIN**: Windowing
- **CH**: Channel
- **FFT**: Fast Fourier Transform
- **CER**: Cyclic extension removal
- **PF**: Pre-filter
- **FEQ**: Frequency-domain equalization
- **QD**: Bank of QAM decoders
The VDSL Channel

• VDSL channel is complicated
 – Channel impulse response modeled as a Finite Impulse Response (FIR) filter
 – Crosstalk: Near-end crosstalk (NEXT) and far-end crosstalk (FEXT) modeled as outputs of FIR filters whose inputs are White Gaussian Noise (WGN)

Symbols in → FIR_{ch} → + → Symbols out

$\text{WGN} \rightarrow \text{FIR}_{\text{next}}$

$\text{WGN} \rightarrow \text{FIR}_{\text{fext}}$

Computational model: SDF
Data type on arcs: Real numbers
Solution: Implementation in ADS

- Implement the SDF model for discretized transmission using Agilent Advanced Design System (ADS)
 - Create a hierarchical design
 - Higher levels: Use mainly built-in dataflow library actors of ADS
 - Use MATLAB for implementing customized actors in sub-components
- Given a VDSL channel, design the pre-filter and frequency domain equalizer (FEQ)
 - Use MATLAB to design filters
 - Filter coefficients directly exported to ADS
- Design a bank of Quadrature Amplitude Modulation (QAM) encoders/decoders based on the bit allocation table
 - Each encoder/decoder uses a lookup table to encode/decode sub-symbols
Evaluation

• Testing our ADS system design
 – System parameters
 • A VDSL line (Loop 5): 300 m in length
 • 512 sub-carriers (FFT/IFFT size 1024)
 • 80 sub-symbols for cyclic extension
 • Sampling frequency of 4.416 MHz
 – Assumed perfect synchronization of the receiver and transmitter
 – Designed a pre-filter: A 5-tap time-domain equalizer to shorten the channel impulse response
 – Designed a 1-tap Frequency Domain Equalizer per sub-carrier
 – Achievable bit rate was 17.9 Mbps for a bit error rate of 10^{-7}
Conclusion

• Deliverable:
 – Synchronous Dataflow model for discretized VDSL transmission implemented in ADS
 – MATLAB scripts for co-simulation
 – Flexible framework for testing designs
 – European Telecommunication Standards Institute (ETSI) compliant

• Impact: Accelerate product development
 – Given the high-level design, sub-components can be easily upgraded and tested
 – Powerful tool when coupled with ADS’s Verilog and VHDL code synthesis capability
 – Major requirement for the DSP-based solutions