
H.26L Video Server Modeling Using

Computational Process Networks

Serene Banerjee

Dept. of ECE, The University of Texas, Austin, TX 78712-1084 USA

fsereneg@ece.utexas.edu

Embedded Software Systems, Final Project Report

May 8th, 2002

Abstract

Recent applications such as video conferencing systems, Digital Versatile Disc (DVD) systems,

digital cable television, and video streaming, built on years of digital video research. State-of-the-

art video coding standards such as H.263 (1995), MPEG-2 (1996), and MPEG-4 (2001) have a

common goal of achieving higher compressed video quality for lower bit-rates. The International

Video Coding Experts' Group (VCEG) is standardizing the next-generation video-coding standard,

H.26L. This will reduce the bit rate by about 50%, at the expense of a roughly four-fold increase

in implementation complexity.

Computational Process Networks (CPN) is a scalable framework for real-time data-intensive

systems' implementation on commodity multiprocessor workstations. This is an extension of the

process networks model, which captures functional parallelism, guarantees determinate execution,

and runs in bounded memory if a bounded memory implementation exists. Typically for video

encoders bounded memory implementations exist.

As CPN can model the inherent parallelism in the H.26L video encoder and preserve functional

precedence, a faster execution of the video encoder is possible. The contributions of this paper are:

� Model a version of the H.26L video encoder on the CPN framework

� Implement the proposed model and test it on 176� 144 QCIF resolution frames

� Explore applications where this implementation would be useful.

Index terms: H.26L video encoder, computational process networks, system modeling, functional

and data level parallelism, computational complexity, data
ow models

1



1 Introduction

The International Telecommunication Union (ITU) is proposing the new video coding standard,

H.26L, which is aimed at providing enhanced compression performance at a very low bit rate for

real-time, low end-to-end delay applications [1{8]. The model provides bit rate savings of about

50% when compared to an H.263+ codec that has been optimized for visual quality for sequences

at low bit-rates. Also, improved network adaptation layers (NALs) are being developed so that the

coded video data can be transported in existing and future networks, such as circuit-switched wired

networks, Internet Protocol (IP) networks with real{time transport protocol (RTP) packetization,

and third-generation wireless systems. But this increase in bit rate vs. quality trade-o� comes

at the cost of a four{fold increase in implementation complexity when compared to the fully

optimized H.263+ codec [8].

In this project the inherent functional parallelism of the H.26L video encoder is exploited

and Computational Process Networks (CPN) is used to implement a system level modeling of

the encoder, for faster performance. Allen and Evans [9] developed CPN and use their C++

implementation of CPN to implement a real-time beamformer on multiple workstations. He and

Zhong [10] use CPN [9] to implement MPEG-4 encoder on a similar model. He, Ahmad and

Liou [11,12] implement a MPEG-4 codec on a group of workstations using hierarchical Petrinets.

On a single processor machine, for encoding three 176 � 144 QCIF resolution frames of the

Foreman video sequence the time taken for both the sequential and parallel implementation of the

encoders are same. However, this design is scalable to a multi processor workstation, and CPN can

then extract more parallelism, for faster encoding. Also, if more number of frames were encoded,

parallel processing would reduce encoding time, compared to a sequential implementation.

2



In this paper, Section 2 presents a formal model of the H.26L video encoder as a homogeneous

Synchronous Data
ow model, and discusses how it can be extended to a CPN model. Section 3

provides a description of the software implementation using C/C++/Pthreads, based on the

model. The results and a comparison of the original sequential version of the H.26L video encoder

with the concurrent implementation are presented in Section 4. Possible applications where con-

current video encoding using POSIX threads would be useful are discussed in Section 5. Finally,

Section 6 concludes the paper and provides directions for future work.

2 Modeling

The H.26L video-coding standard separates the video encoder into two separate layers: a video

coding layer that is responsible for e�ciently representing the video content, and a network adap-

tation layer that packs the coded data in an appropriate manner based on the network over which

it is being transmitted. The focus of this work is on the video coding layer.

Figure 1 shows a generic block diagram of a H.26L video compression codec, where the encoded

bitstream reduces the spatial and temporal statistical redundancy in video sequences. Modi�ed

versions of this block diagram also applies to other video codecs such as H.263, MPEG-2, MPEG-4

simple pro�le video encoders. Like the present video coding standards, H.26L also has inherent

functional and data level parallelism, and hence can be modeled using formal system-level com-

putational models.

In order to model the computation and communication in the video encoder, the statically

schedulable Synchronous Data
ow (SDF) model, or dynamically schedulable Boolean Data
ow

(BDF) or Dynamic Data
ow (DDF) may be used to guarantee determinacy and correctness [13].

3



Figure 1. Generalized block diagram of a H.26L video encoder having block-based motion

compensation and transform coding. This can be mapped to an homogeneous Synchronous

Data
ow (SDF) model with one token on each arc.

Kahn's process network is a superset of data
ow models and is a computational model where

concurrent processes are connected by unidirectional �rst-in-�rst-out (FIFO) queues. When a

block reads values on an input port, the block's execution will halt until enough data is available

on that input port. If enough data is available, then the block consumes (dequeues) the data on the

port. The results obtained from a process network are determinate, irrespective of the execution

order in the model. However, determining whether the process network can be scheduled or not

in bounded memory cannot be predicted in a �nite amount of time.

Parks [13] extended Kahn's process networks by setting a �nite capacity on each arc (queue)

and developed a scheduling policy that will yield bounded execution if one exists. When a block

tries to write to a full queue, arti�cial deadlock is introduced, which can be corrected by in-

creasing the size of the full queue. Allen and Evans [9] added �ring thresholds to the queues to

4



form computational process networks (CPN). Their model combining process networks, bounded

scheduling for realization in �nite memory, and �ring thresholds from computation graphs [14],

avoids running into arti�cial deadlocks. Their implementation of CPN using C++ and portable

operating system interface (POSIX) threads is intended for computationally intensive algorithms

on large symmetric multiple workstations. However, with context switching between the nodes

and amount of load on each node, tradeo�s between overhead, latency and parallelism will exist.

Allen and Evans' [9] computational process networks model is a scalable framework that could be

mapped onto a multiprocessor workstation.

In this project computational process networks is used to model the data 
ow and control 
ow

of the H.26L video encoder, to provide real-time encoding, determinacy, correctness, completed

and bounded execution. Each functional block is modeled as a CPN node and implemented as a

Pthread class. Each arc is represented by a FIFO queue, and fork nodes are implemented so that

inputs are copied to multiple outputs. In a similar work He and Zhong [12] model a MPEG-4

simple visual pro�le video encoder using CPN.

3 Implementation

This work parallelizes a sequential version of the H.26L video encoder available at:

ftp://standards.pictel.com/video-site/h26L/

The source code is in ANSI C and supports CIF (352�288) and QCIF (176�144)resolution image

sequences. The source code is targeted for demonstration purposes, and encodes three frames of

the QCIF resolution Foreman input sequence in 21.6 seconds.

5



This version of the H.26L video encoder was implemented using CPN, based on the Pthread

library and Allen and Evans' [9] C++ implementation of CPN framework available at

http://www.ece.utexas.edu/~allen/PNSourceCode/

This implementation of CPN is scaled by the operating system according to the available number

of processors up to the amount of functional parallelism exposed by the PN graph. The classes,

CPNNode and CPNQueue were used to implement the nodes and queues respectively.

The implementation presented here followed the works of He and Zhong's [12] implementation

of an MPEG-4 video encoder on CPN. The basic design steps involved are:

� System modeling: The sequential code was modeled as self-contained blocks as the Fig-

ure 1. Each of these blocks were speci�ed to be one CPN node, that inputs one token,

processes it, and outputs one token, after processing on it. Each of these nodes were inher-

ited from the Pthread class CPNNode. Adjacent nodes communication via �rst-in-�rst-out

(FIFO) queues. The queue class is inherited from the Pthread class CPNQueue

� Token speci�cation: Each frame of the input video sequence is described as one token.

Within the frame the block-based computations are done sequentially in this implementa-

tion. However, more parallelism could have been extracted, if block based computations

could be done parallely, as well.

� Precedence preservation: The designed queues with the �ring thresholds and the nodes

preserve functional precedence, as the nodes do not �re, until there is an output token from

the previous node.

6



(a) (b)

Figure 2. Original (a) and H.26L encoded (b) frame 2 for the 176 � 144 QCIF resolution

Foreman input video sequence, with 25 : 1 compression

4 Results

The CPN implementation of the H.26L video encoder functions correctly, and the compressed

bitstream is successfully decoded by the H.26L video decoder. The input sequence contains three

frames of the QCIF resolution (176� 144) Foreman video sequence. The �rst frame is coded as

an intra or I-frame, where each block in the frame is coded as it is, and hence the spatial and

temporal redundancies are not exploited. The second one is coded as a bidirectionally predicted

or B-frame, where each block in the frame is forward and backward predicted from the previous

and next frame respectively, and the di�erence is encoded. The last frame is coded as a predicted

or P-frame, where each block in the frame is forward predicted from the two previous frames.

Figure 2 presents the original and H.26L encoded second frame. The compression achieved

for the three frames is 25:1, and the encoding time is 21.6 seconds, which is comparable to

the sequential implementation. Though the parallel implementation does not reduce encoding

time, for three frames on a single processor, it is expected to perform better on a multiprocessor

7



platform, where independent tasks can be distributed to di�erent processors. Also, increasing the

number of frames to be encoded, will also enable CPN to take advantage of more parallelism.

5 Applications

Video encoding and processing on POSIX threads, exploiting parallelism, will bene�t innu-

merable on-line real-time constraint applications, such as, video transcoding over the Internet,

video conferencing, and video streaming applications. Zhou, Vellaikal, Shen and Kuo [15] suggest

an on-line scene change detection algorithm in multicast video, which is realizable using POSIX

threads. The bu�ering and processing of frames are modeled on separate processors for scene

change detection in their work. For video conference and streaming, after segmenting the video

sequence, each segment can be processed on a di�erent processor, to meet real-time deadlines.

6 Conclusions and Future Work

Allen and Evans' [9] CPN framework provides a scalable platform for building computationally

intensive signal processing applications on commodity workstations. This work uses their libraries

to build a parallel implementation of a H.26L video encoder. For encoding 3 video frames, the

concurrent execution of CPN nodes, and the original sequential program takes the same time on

a single processor workstation, due to inter dependencies of the nodes. More speedup would be

obtained by experimenting on a multiprocessor platform, or by exploiting the parallelism existing

in each node. Although the current implementation is far from meeting real-time deadlines, the

key insight of this work is that the CPN implementation of the H.26L video encoder can be scaled

to a multiprocessor platform for faster execution.

8



References

[1] G. Bjontegaard, \H.26L Test Model Long Term No. 1 (TML-1) Draft 2," Tech. Rep. 1, ITU-T Video

Coding Experts Group, Aug. 1999. ftp://standard.pictel.com/video-site/9908 Ber/q15h36d2.doc.

[2] A. P. Joch, \H.26L: Analysis and Real-Time Encoding Algorithms," Master's thesis, Dept. of Elec-

trical and Comp. Engg., The University of British Columbia, Jan. 2002.

[3] K. Dovstam, \Video Coding in H.26L," Master's thesis, Dept. of Microelectronics and Informa-

tion Tech., Royal Institute of Technology, Apr. 2000. http://www.it.kth.se/docs/Reports/DEGREE-

PROJECT-REPORTS/000601-Kristofer-Dovstam.pdf.

[4] M. Flierl, T. Wiegand, and B. Girod, \Multihypothesis Pictures for H.26L," in Proc. IEEE Int.

Conf. on Image Proc., vol. 3, pp. 526{529, Oct. 2001.

[5] A. Hallapuro, V. Lappalainen, and T. D. Hamalainen, \Performance Analysis of Low Bit Rate

H.26L Video Encoder," in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc., vol. 2,

pp. 1129{1132, May 2001.

[6] V. Lappalainen, A. Hallapuro, and T. D. Hamalainen, \Optimization of Emerging H.26L Video

Encoder," in Proc. IEEE Workshop on Signal Proc. Systems, vol. 1, pp. 406{415, Sept. 2001.

[7] G. J. Sullivan, T. Wiegand, and T. Stockhammer, \Using the Draft H.26L Video Coding Standard

for Mobile Applications," in Proc. IEEE Int. Conf. on Image Proc., vol. 3, pp. 573{576, Oct. 2001.

[8] S. Wenger, \A High Level Syntax for H.26L: First Results," in Proc. IEEE/SPIE Int. Conf. on

Visual Comm. and Image Proc., vol. 4067, pp. 1307{1316, June 2000.

[9] G. E. Allen and B. L. Evans, \Real-Time Sonar Beamforming on Workstations Using Process Net-

works and POSIX Threads," IEEE Trans. on Signal Proc., vol. 48, pp. 921{926, Mar. 2000.

[10] Y. He, I. Ahmad, and M. L. Liou, \Real-time Interactive MPEG-4 System Encoder Using a Cluster

of Workstations," IEEE Trans. on Multimedia, vol. 1, pp. 217{233, June 1999.

[11] Y. He, I. Ahmad, and M. L. Liou, \A Software-Based MPEG-4 Video Encoder Using Parallel

Processing," IEEE Trans. on Circuits and Systems for Video Tech., vol. 8, pp. 909{920, Nov. 1998.

[12] C. He and S. Zhong, \System Modeling and Software-based Implementation of MPEG-2 Video

Encoder," in Proc. IEEE Asilomar Conf. on Signals, Systems and Comp., vol. 2, pp. 1058{1062,

Oct. 2000.

[13] T. M. Parks, Bounded Scheduling of Process Networks. PhD thesis, Dept. of Elec-

trical Engg. and Comp. Sciences, University of California at Berkeley, Dec. 1995.

http://ptolemy.eecs.berkeley.edu/papers/95/parksThesis/.

[14] R. M. Karp and R. E. Miller, \Properties of a Model for Parallel Computations: Determinacy,

Termination, Queuing," SIAM Journal, vol. 14, pp. 1390{1411, Nov. 1966.

[15] W. Zhou, A. Vellaikal, Y. Shen, and C.-C. J. Kuo, \On-line Scene Change Detection of Multicast

Video," Academic Press Journal on Visual Comm. and Image Representation, vol. 12, pp. 1{16,

Mar. 2001.

9


