
H.26L Video Server Modeling Using

Computational Process Networks

Serene Banerjee

Dept. of ECE, The University of Texas, Austin, TX 78712-1084 USA

fsereneg@ece.utexas.edu

Abstract

Recent applications like video conferencing, Digital Versatile Disc (DVD) systems, digital cable

television, and video streaming, have promoted an impressive growth of the digital video research.

State-of-the-art video coding solutions such as H.263, MPEG-2, and MPEG-4 have a common goal

of achieving higher compressed video quality for lower bit-rates. The International Video Coding

Experts' Group (VCEG) is standardizing the next-generation video-coding standard, H.26L. This

will reduce the bit-rate by about 50%, at the expense of increased (3.8X) complexity. Computational

Process Networks (CPN) is a scalable framework for real-time data-intensive systems' implemen-

tation on commodity multiprocessor workstations. This is an extension of the process networks

model, which captures parallelism, guarantees determinate execution in bounded memory. In this

project we propose to implement a version of the H.26L video encoder on the CPN framework.

1



1 Introduction

The International Telecommunication Union (ITU) is proposing the new video coding standard,

H.26L, which is aimed at providing enhanced compression performance at a very low bit rate,

real-time, low end-to-end delay mobile applications [1{8]. The model provides bit rate savings of

about 50% or more compared to a performance optimized H.263+ codec, for most sequences at low

bitrates. Also, improved network adaptation layers (NAL) is being developed so that the coded

video data can be transported in existing and future network, such as circuit-switched wired

networks, IP networks with RTP packetization, and 3G wireless systems. But this increase in

performance is at the cost of several times increase in complexity, compared to the H.263+ codec.

It takes up to 10 seconds to code a single 176�144 QCIF picture using the available unoptimized

software [8]. We propose to exploit inherent data level parallelism of the H.26L encoder and

implement a system level modeling for faster performance, using Computational Process Networks

(CPN). Allen and Evans [9] implement a real-time beamformer on multiple workstations, and He

and Zhong [10] implement MPEG-4 encoder on a similar model. He, Ahmad and Liou implement

a MPEG-4 [11, 12] codec on a group of workstations using a hierarchical Petri-nets-based model.

2 H.26L Standard

H.26L video-coding standard, separates the video server design into two separate layers: a

video coding layer that is responsible for e�ciently representing the video content, and a network

adaptation layer that packs the coded data in an appropriate manner based on the network it

is being transmitted. Our focus will be on the video coding layer. Figure 1 shows a generic

block diagram of a video compression codec, for example an H.263, MPEG-2, or MPEG-4 simple

2



Inverse

Quantization

Cosine

Inverse 

Transform

Frame
Memory

Motion
Compensation

-

+

+

Motion Vectors and Mode

Motion
Compensated
Prediction

Input
Frame

Difference
Displaced Frame

Cosine 
Transform

Motion

Quantization

Estimation

Entropy
Coding

Output
Bitstream

Discrete

Discrete

Figure 1. Generalized block diagram of a hybrid block-based motion compensation and transform
coding video encoder.

pro�le codec, where the encoded bitstream reduces the spatial and temporal statistical redundancy

existing in video sequences. The following innovative features in the H.26L encoding standard

improve performance over the state-of-the-art models at the cost of complexity increase:

� Motion representation: Depending on the context, the block sizes for Intra (I), Inter (P),

and Bi-directional (B) motion prediction can be 16�16, 8�16, 16�8, 8�8, 4�8, 8�4, and

4�4 pixels. Thus multihypothesis pictures can be generated for H.26L [4] producing bit-rate

savings up to 13% for test video sequences. The standard supports 1

4
and 1

8
sample motion

vector accuracy. Multi-frame motion-compensated prediction is also supported. Also, for

motion representation, a predictive switching between di�erent video streams or between

di�erent parts of a single video stream is also supported with the inclusion of SP-pictures.

3



� Transform processing: After �nding the best matching block, the prediction block is

subtracted from the original block to produce a residual image signal. A two-dimensional

Discrete Cosine Transform (DCT) given by Equation 1 is applied to the 8�8 residual image

block so that the energy is compacted in small number of transform domain coe�cients.

ykl =
c(k)c(l)

4
�7

i=0�
7

j=0xij cos

�
(2i+ 1)k�

16

�
cos

�
(2j + 1)l�

16

�
(1)

where k; l = 0; 1; :::; 7 and c(k) =

� 1p
2
if k = 0

1 otherwise

However, as the DCT is de�ned in terms of oating point values, H.26L approximates the

DCT using a reversible integer transform. To extend the length of the basis functions for

smooth regions, a 4 � 4 and 2 � 2 integer transform is applied to the DC values of the

luminance and chrominance data, respectively. Also, for improved rate control capability a

variable quantization step sizes is supported, instead of �xed step sizes.

� Entropy coding and coe�cient scanning: Universal Variable-Length Coder (UVLC)

and Context-Adaptive Binary Arithmetic Coder (CABAC) are supported. The code table

generated for UVLC can be represented in the following compressed form:

1

0 x0 1

0 x1 0 x0 1

0 x2 0 x1 0 x0 1

0 x3 0 x2 0 x1 0 x0 1

4



where xn take values 0 or 1. Thus, a codeword can be uniquely represented by its length

in bits (L) and INFO = xn ::: x1 x0. UVLC code table is customized to the probabilistic

behavior of the data. CABAC adapts to local source statistics and exhibits extremely

e�cient entropy coding, especially for very �ne or very coarse grain quantization. For

CABAC, a di�erent model is maintained for each of the syntax elements (e.g., motion

vectors and transform coe�cients have di�erent models).

� Deblocking �lter: Block-edge artifacts are reduced using in-loop �lter applied to the

horizontal and vertical edges.

� Intra prediction: Directional prediction in the spatial domain is used providing greater

e�ciency than coe�cient value prediction in the transform domain.

For the Foreman input sequence at 24kbps, the unoptimized encoder takes 84% time for motion

estimation, 4% for image interpolation and rest 12% for the other functions. For a highly optimized

version, these �gures are 57%, 9%, and 34% respectively [5].

3 Process Networks

For formal system-level modeling statically schedulable Synchronous Dataow (SDF) model,

or dynamically schedulable Boolean Dataow (BDF), or Dynamic Dataow (DDF) may be used

to provide portability and scalability over heterogeneous software environments to guarantee de-

terminacy and correctness [13]. Kahn's process network is a superset of dataow models and is a

computational model where concurrent processes are connected by unidirectional �rst-in-�rst-out

(FIFO) queues. The results obtained from a process network are determinate, irrespective of the

5



execution order in the model. However, determining that the process network can be scheduled

in bounded memory cannot be predicted on a �nite amount of time. Parks [13] developed a

scheduling policy that will yield bounded execution if one exists.

However, when a queue is full, arti�cial deadlocks are introduced, which can be avoided by

increasing the queue size in case one occurs. Allen and Evans [9] added queue-�ring thresholds to

form computational process networks (CPN). These queues are equivalents of modulo addressing

units on digital signal processors (DSP). Their implementation of CPN using C++ and portable

operating system interface (POSIX) threads is intended for computationally intensive algorithms

on large symmetric multiple workstations. However, with context switching between the nodes

and amount of load on each node, tradeo�s between overhead, latency and parallelism will exist.

The H.26L video encoder will be ported on the C++ implementation of their CPN framework

available at http://www.ece.utexas.edu/~allen/PNSourceCode/. This implementation of CPN is

scaled by the operating system according to the available number of processors.

4 Parallel Image/Video Processing

He and Zhong [12] model a MPEG-4 simple visual pro�le video encoder, with block diagram

similar to Figure 1, using CPN. Each functional block is modeled as a CPN node and implemented

as a Pthread class. Each arc is represented by a FIFO queue, and fork nodes are implemented

so that inputs are copied to multiple outputs. Deadlock is avoided by having an arbitrary initial

token on a delay arc, before executing the motion estimation and motion compensation blocks.

They show that their concurrent implementation of MPEG-4 on the average is about 30% faster

than a sequential implementation of MPEG-4 encoder.

6



He, Ahmad and Liou [11, 12] implement a parallel processing version of an MPEG-4 video

codec using hierarchical Petri-nets-based model. This is a graphical and mathematical tool for

describing concurrent, asynchronous, distributed, nondeterministic and parallel characteristics of

systems. They have experimented with three types of scheduling algorithms to assign video objects

to workstations in parallel, so that synchronization requirements are enforced and presentation

deadlines are met. They are:

� Round-robin schedule: Video objects are assigned to workstations sequentially.

� Group schedule: Divides the workstations in groups and each group encodes a video

object plane concurrently.

� Group of video adjusting schedule: For video objects whose size change rapidly, tasks

are merged to obtain load balancing.

Each algorithm while showing real-time encoding rates for MPEG-4, exhibits load balancing,

scheduling overhead cost and global performance tradeo�s. Their results show that with 20

workstations, the MPEG-4 encoder can have an encoding rate higher than real time for CIF

resolution (352�288) video sequences, allowing the encoding of multiple sequences simultaneously.

In the Petri-nets-based modeling [11,12] real-time performance is dependent on the scheduling

and partitioning algorithms, but not on the modeling part. However, in the CPN based model-

ing [9,12] the memory, latency, and scheduling issues are automatically resolved by the operating

system, thus providing a uni�ed approach and better scalability.

On a single workstation, the concurrent execution of CPN nodes in He and Zhong's [12] model

outweighs overheads created by C++/Pthread programming. However, they have not experi-

7



mented on a multiple workstation platform, by re�ning each CPN node and balancing the com-

putational load among them. For a single processor, varying the FIFO queue size did not produce

any signi�cant reduction in the execution time. However, as their model is scalable to a multi-

processor platform, real-time performance will be achieved by varying the FIFO queue sizes on a

CPN model with load-balanced nodes.

Feil, Kutil, Meerwald, and Uhl [14] show data parallelism involved in wavelet based image and

video codecs. Patrick, Sanders, DeBrunner, DeBrunner, and Radhakrishnan [15] implement a

JPEG codec via parallel processing, where each operation is performed on a di�erent DSP.

5 Proposed Work

Like the present video-coding standards, H.26L also has inherent data level parallelism, and can

be hence modeled using formal system-level computational models. Allen and Evans' [9] Computa-

tional Process Networks model is a scalable framework suitable for implementing computationally

intensive algorithms on a cluster of workstations. The goals of this project are:

� Use computational process networks to model the data ow of the H.26L video encoder, to

provide real-time encoding, determinacy, correctness, completed and bounded execution.

� Implement a version of the H.26L video based on the Pthread library and Allen and Evans' [9]

C++ implementation of Computational Process Networks

� Compare complexity, cost and performance tradeo�s with varying the FIFO queue sizes and

the number of processors.

8



References

[1] G. Bjontegaard, \H.26L Test Model Long Term No. 1 (TML-1) Draft 2," Tech. Rep. 1, ITU-T Video

Coding Experts Group, Aug. 1999. ftp://standard.pictel.com/video-site/9908 Ber/q15h36d2.doc.

[2] A. P. Joch, \H.26L: Analysis and Real-Time Encoding Algorithms," Master's thesis, The University

of British Columbia, Jan. 2002.

[3] K. Dovstam, \Video Coding in H.26L," Master's thesis, Royal Institute of Technology,

Apr. 2000. http://www.it.kth.se/docs/Reports/DEGREE-PROJECT-REPORTS/000601-Kristofer-

Dovstam.pdf.

[4] M. Flierl, T. Wiegand, and B. Girod, \Multihypothesis Pictures for H.26L," in Proc. IEEE Int.

Conf. on Image Proc., vol. 3, pp. 526{529, Oct. 2001.

[5] A. Hallapuro, V. Lappalainen, and T. D. Hamalainen, \Performance Analysis of Low Bit Rate

H.26L Video Encoder," in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Proc., vol. 2,

pp. 1129{1132, May 2001.

[6] V. Lappalainen, A. Hallapuro, and T. D. Hamalainen, \Optimization of Emerging H.26L Video

Encoder," in Proc. IEEE Workshop on Signal Proc. Systems, vol. 1, pp. 406{415, Sept. 2001.

[7] G. J. Sullivan, T. Wiegand, and T. Stockhammer, \Using the Draft H.26L Video Coding Standard

for Mobile Applications," in Proc. IEEE Int. Conf. on Image Proc., vol. 3, pp. 573{576, Oct. 2001.

[8] S. Wenger, \A High Level Syntax for H.26L: First Results," in Proc. IEEE/SPIE Int. Conf. on

Visual Comm. and Image Proc., vol. 4067, pp. 1307{1316, June 2000.

[9] G. E. Allen and B. L. Evans, \Real-Time Sonar Beamforming on Workstations Using Process Net-

works and POSIX Threads," IEEE Trans. on Signal Proc., vol. 48, pp. 921{926, Mar. 2000.

[10] Y. He, I. Ahmad, and M. L. Liou, \Real-time Interactive MPEG-4 System Encoder Using a Cluster

of Workstations," IEEE Trans. on Multimedia, vol. 1, pp. 217{233, June 1999.

[11] Y. He, I. Ahmad, and M. L. Liou, \A Software-Based MPEG-4 Video Encoder Using Parallel

Processing," IEEE Trans. on Circuits and Systems for Video Tech., vol. 8, pp. 909{920, Nov. 1998.

[12] C. He and S. Zhong, \System Modeling and Software-based Implementation of MPEG-2 Video

Encoder," in Proc. IEEE Asilomar Conf. on Signals, Systems and Comp., vol. 2, pp. 1058{1062,

Oct. 2000.

[13] T. M. Parks, Bounded Scheduling of Process Networks. PhD thesis, University of California at

Berkeley, Dec. 1995. http://ptolemy.eecs.berkeley.edu/papers/95/parksThesis/.

[14] M. Feil, R. Kutil, P. Meerwald, and A. Uhl, \Wavelet Image and Video Coding on Parallel Archi-

tecture," in Proc. IEEE Int. Symp. on Image and Signal Proc. and Analysis, vol. 1, pp. 24{35, June

2001.

[15] J. S. Patrick, J. L. Sanders, L. S. DeBrunner, V. E. DeBrunner, and S. Radhakrishnan, \JPEG

Compression/Decompression via Parallel Processing," in Proc. IEEE Asilomar Conf. on Signals,

Systems and Comp., vol. 1, pp. 596{600, Nov. 1997.

9


