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Abstract

Automated analysis is necessary to verify the correct operation of concurrent sys-

tems. Petri nets have a large body of research, both theoretical and practical, sup-

porting their use for concurrent system analysis. The Java language provides built-in

capabilities for developing concurrent systems with threads. Researchers have exam-

ined how to extract transition systems from Java source and how to construct Petri

nets from transition systems. This paper describes a way to link these research efforts

using a newly developed method of efficiently enumerating all reachable state transi-

tions. It uses a novel method of state encoding with Binary Decision Diagrams (BDDs)

to achieve its result.
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Introduction

The complexity of concurrent systems creates uncertainty over how to verify system cor-

rectness or perform analysis of particular system properties. Petri net research has yielded

models of concurrent systems which are useful for analysis, either visually or with tools [1].

The Java programming language has built-in support for creating concurrent, multi-

threaded programs. Current research has produced methods and systems to extract transi-

tion systems (TS) from Java source [2]. Other recent research details how to construct Petri

nets from transition systems [1]. While both research areas speak of transition systems,

they are not directly compatible with each other. We have developed a method to take a

complex Von Neumann transition system and produce a state graph TS. We have proto-

typed the complete system and tested it on simple concurrent problems such as deadlock

and producer/consumer.

1 From Java to Petri Net

The system that we have constructed for creating a Petri net representation of a Java program

involves three programs and four data representations, as shown in Figure 1.

Graph
Java Petri

Bandera Net
BIR PetrifyBETS

State
Program

Figure 1: Create a Petri net from a Java program with three programs and two intermediate
data representations.

Bandera, a research program being developed by Corbett [2] and a group at the Univer-

sity of Kansas, transforms a Java program into a Von Neumann Architecture-like transition
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system called Bandera Intermediate Representation (BIR). Bandera performs state space

abstractions to eliminate the parts of the Java program that are not directly of interest,

such as those operations on local variables which have no effect on the concurrent operation

of the program [2].

Petrify, a program developed by Cortadella [1], takes a state graph transition system

and produces a Petri net. Petrify has a number of options to control the properties of the

resulting Petri net. In general, we direct Petrify to generate “free choice” Petri nets because

they are the easiest form to digest visually and trace by hand.

We have developed the component in the middle portion of the diagram, called BETS

(the BIR Extraction to Transition System). BETS extracts a Petrify-compatible state graph

from BIR, so that a concurrent Java program may be modeled as a Petri net.

2 BIR and State Graph Models
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Figure 2: From [1]: (a) State graph transition system and corresponding (b) Petri net.

Mathematically, a transition system is a tuple TS = (S,E, T, sin) of a set of states S

and a set of events E, a T ⊆ S×E×S transition relation, and an initial state sin. You can

see a graphical depiction of a TS in Figure 2(a). This simple TS form can be called a state

graph.

The Bandera system generates a more complex TS to represent a Java program, called
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Bandera Intermediate Representation (BIR). It looks more like a Von Neumann Architecture

program than a state graph:

Process Deadlock()

buffer : lock A;

buffer : lock B;

main thread T0

loc0: when lockAvailable(A) do { lock(A); } goto loc1;

loc1: when lockAvailable(B) do { lock(B); } goto loc2;

loc2: { unlock(B); unlock(A); } goto loc0;

end T0;

thread T1

loc3: when lockAvailable(B) do { lock(B); } goto loc4;

loc4: when lockAvailable(A) do { lock(A); } goto loc5;

loc5: { unlock(A); unlock(B); } goto loc3;

end T1;

end Deadlock;

We treat the locations, locX statements, as program counter (PC) “addresses.” Each

location has one or more associated actions, each with an optional guard. At each loca-

tion/address, an action is available, possibly behind a guard. Running threads execute the

actions at a specific location atomically. The interleaving of the actions is intentionally

arbitrary and non-deterministic.

The task for BETS is to transform the BIR into a state graph like that shown in

Figure 2(a). BETS produces a text listing of all state transitions in this tuple format:

<originating state name> <transition name> <destination state name>.

For example, a tuple might look like this: s0 P1 loc1 s1. There are some minor shortcuts

available in the format, but the ultimate size of the output is on the order of the number of

transitions. So, if the number of states or the number of transitions is of an unmanageable

order of magnitude, then no matter what BETS does, the problem will not be practically

solvable. For problems that are practically solvable, BETS aims to perform the transfor-

mation as efficiently as possible. The resulting state graph can then be fed into Petrify to
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generate a Petri net, like that shown in Figure 2(b).

2.1 State Representation

BETS represents states by boolean functions in a new and novel way. A meaning of a state

function is most apparent when it is expressed as a sum-of-cubes formula. The boolean

variables are represented by simple 1-variable cubes which are or are not present. State

components that have a value are represented by tagged cubes. There is a special variable,

the tag, which represents the purpose of the cube. The rest of the variables in the cube encode

the value associated with the tag. The current implementation supports 32-bit values, but

that is an arbitrary limit than can be changed, even dynamically.

Values are encoded by a set of variables which represent bits in the value. A repre-

sentative “power” variable,px, is only present in the cube if the xth bit is a 1. The decimal

value 10 can then be represented by the cube p3p1.

Of particular interest is that state functions contain a value which represents the PC

for each running thread. The PC-space, program address space, can be “shared” so that

multiple copies of the same thread can be run concurrently. The Bandera code cannot

support multiple copies of a thread at the moment, but if Bandera is improved, BETS can

accommodate.

Here is an example of a state function:

s0 = t0p2 + t1p1 + la

The state s0 has two running threads. Thread t0 is at PC 4. Thread t1 is at PC 2. The

lock la is held by the thread whose PC requires it to be holding the lock in a protected critical

section. There is no reason to encode which thread owns the lock in the model that we used.

Certainly, other modeling goals may use variations of this particular encoding scheme.
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All functions are organized and represented by Binary Decision Diagram (BDD) data

structures. The BDDs are actually Reduced-Ordered BDDs managed by a BDD manipula-

tion library, organized as a “BDD package” [3]. Numerous BDD packages are available and

they all make available a relatively common API. A function represented by a BDD takes

the form of a handle to a BDD node. BDDs have proven a very effective and efficient way to

represent boolean functions in many areas, including symbolic simulation, logic optimization,

combinational logic verification [4], and graph transformation (Petrify) [1].

For example, to extract the value cube (cube of only p power variables) of a tagged

cube in a sum-of-cubes, BETS does this:

BDD pcube = exists(restrict(!cofactor(sumOfCubes, !tagVariable)), tagVariable)

Existential, restriction, and cofactoring operations are normal elements of BDD package

function manipulation.

2.2 State Exploration

The reachable states of the graph are explored in a manner similar to a breath-first search.

The initial state is added to the set of to-do states. This state is probably a state in which

a special, main thread has a PC of zero and is thus ready to run its first instruction.

While the to-do set is not empty, an arbitrary state is selected from that set for pro-

cessing. Once a state is selected from the to-do set, it is added to the previously-done set so

that requests to add the state to the to-do set again can be ignored.

As described previously, a state is a function represented by a BDD node. The BDD

package APIs give out handles to nodes, often in the form of a pointer. The API that BETS

uses hands out opaque 32-bit unsigned values as BDD node handles. BETS encodes the

32-bit BDD node values as a BDD cube. It uses the p power variables mentioned earlier,
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but all 32 power variables are present in every cube as either positive or negative literals.

This allows the selection routine to work, though we will not be covering the details of that

selection in this paper.

The sum of these value cubes is a function representing a set of states. Using a sum-of-

cubes where each cube represents a state and the sum represents a set of states is standard

practice in the world of symbolic model checking. In that world, each cube represents a state

directly. In our world, each cube represents a handle to another BDD-represented function

where that function represents our state. As far as we know, this two-layer set-of-states

encoding is novel.

To process a state, each running thread is given a chance to “run.” If a guard at the

thread’s PC is met (there may be more than one), then the action associated with the PC

is “executed.” The execution of an action creates a new state by modifying a copy of the

existing state. The new state is placed in the to-do set if it is not already in the previously-

done set. With our BDD-function implementation of state, a “copy” of a state is simply

another reference to the same BDD: the copying has almost zero cost. The transition from

one state to another is recorded in the output with a characteristic name for the action

that took place. For example, say that two actions are possible at PC 0x4a with mutually

exclusive guards. When executed by thread 0, the name of the first state-transforming action

will be called “t0 4a 1” and the other action will be called “t0 4a 2”. The action name is

what will appear in the Petri net as a transition.

The granularity of the action should depend on the aspect of the system that is being

tested. Every action is executed as an atomic step. To test that the actions of a critical

section are not inappropriately interrupted by another thread, the critical section may be

broken up into a series of actions with different PC addresses. On the other hand, to ensure

that the various critical sections are executed such that the program functions correctly and
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does not deadlock, the critical sections may each exist as a single action in the modeled

program. The Bandera model will tend to break up the actions into the former, more finely

grained model, but it may be worthwhile to devise a mechanism to be able to get a more

coarsely grained model.

2.3 Small Example: Deadlock

t0_l0 t1_l3t0_l2 t1_l5

t0_l1t1_l3 t1_l4t0_l0

Figure 3: Petri net for the Deadlock BIR example in Section 2

Figure 3 shows result of the process on the Deadlock example presented as BIR earlier.

The free-choice Petri net in the figure shows three places where the thread scheduler has

the option of nondeterministically choosing how the program progresses. It also shows that

in two of the places, the scheduler can make a choice that leads to a dead-end. In this

case, the dead-end is a deadlock situation. In other cases, it may signify the successful

completion of a program that is not intended to run forever, or it may mean that the BETS

has stopped exploring state artificially because a particular preset resource limit was hit.

This technique can be used to help alleviate state explosion. For example, if a counter could

theoretically count up to 232, Bandera and BETS allow annotations to restrict the counter

range to something smaller, such as 24.
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2.4 Efficiency

It is hard to say at what point a BDD representation of a function will become inefficient.

There are a few functions which are known to make BDDs “blow up” in size, such as integer

multiplication [5]. BDD size is determined by the specific function represented and small

perturbations can make a large difference in the efficiency of the representation. Practice

has shown that BDDs do a good job for many practical problems [3][4]. Heuristically,

keeping the number of additional thread variables as small as possible is considered a “good

thing” because the worst case size is exponential on the number of variables. Our encoded

representation uses a small set of variables. In particular, adding threads which have no

local state in the modeled system cost only one additional “tag” variable per thread.

3 Conclusion and Future Work

We implemented a trial version of the methods described here to discover their workability.

Far from revealing difficulties, the implementation exercise revealed our design’s flexibility

and led to a series of improvements. The particular usage of BDDs for state encoding and

state exploration is a new novel technique that appears well-suited for the task described

here.

For this experiment, we implemented code for BETS either by hand from a textual

BIR output. This could be automated by integrating the BETS subsystem with the Bandera

framework as the interface between Bandera and Petrify. It should just be a “simple matter

of programming,” however the Bandera framework is complex enough that the task would

probably be somewhat labor-intensive. Further, given that Bandera is Java-based but the

well-developed, well-known BDD packages (such as CUDD [6]) are all C/C++ native code,

a hybrid system is probably most prudent.
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