
Extracting a Petri Net

Representation of Java Concurrency:

Literature Survey

Anita J. Bateman

abateman@cs.utexas.edu

Travis Pouarz

pouarz@ece.utexas.edu

25 March 2002

Abstract

Automated analysis is necessary to verify the correct operation of concurrent sys-

tems. Petri Nets have a large body of research, both theoretical and practical, sup-

porting their use for concurrent system analysis. The Java language provides built-in

capabilities for developing concurrent systems with threads. Researchers have exam-

ined how to extract Transition Systems from Java source and how to construct Petri

Nets from Transition Systems. This paper examines that research and then proposes

designing an automated system to extract a Petri Net from Java source by building

upon that prior work.

i

Introduction

The complexity of concurrent systems creates uncertainty over how to verify system cor-

rectness or perform analysis of a particular system property. Analysis of concurrent systems

frequently suffers from state explosion, which requires exponential resources to solve [1].

Petri Net (PN) research has yielded valid and accurate models of concurrent systems and

has provided various analysis techniques and tools. Researchers have begun to examine the

Java language, which has built-in support for creating multi-threaded software. Their re-

search has produced algorithms to extract Transition Systems (TS) from Java source [2] and

to construct Petri Nets (PN) from Transition Systems [3].

In this paper, we will discuss Transition Systems and Petri Nets as models, identify the

subset of the Java language we are focusing on, expand on the algorithms used to extract a

TS from Java source and constructing a PN from a TS, briefly discuss concurrency analysis

with Petri Nets and propose a design for an automated system to extract a PN from Java

source, building on prior research.

1 Models

(b)

s1

s6
a

s5s4

s2 s3

ba

cc

b

p2

p1 p4

p3

a

b

c

p5
(a)

Figure 1: From [3] (a) Transition System (b) Petri Net

1

We are concerned with two types of models: Transitions Systems and Petri Nets.

Examples of each are presented in Figure 1.

A Transition System is a tuple TS = (S,E, T, sin) of a set of states and a set of events,

a T ⊆ S×E×S transition relation, and an initial state. For our purposes, we will not allow

any self-loops or multiple arcs between two states [3]. A Finite State Machine (FSM) is a

well-known type of TS where the set of states must be of finite size.

A Petri Net is a tuple N = (P, T, F,m0) of a finite set of places, and a finite set of

transitions, an F ⊆ (P × T) ∪ (T × P) flow relation, and an initial marking. It is a graph

model with two types of nodes, places (circles) and transitions (blocks or lines). Directed

edges are allowed between place and transition nodes, but not between nodes of the same

type. A place containing a token traditionally contains a solid dot. A marking is the set of

places which contain tokens [3].

Petri Nets are simulated according to the following firing rule: a transition is enabled

when all incoming places contain at least one token. Upon firing the transition, a token is

removed from all incoming places and a token is added to all outgoing places.

Petri Nets are strictly more powerful than FSMs. A safe Petri Net has exactly the

same expressive power as an FSM. A Petri Net is safe if for each reachable marking, each

place contains no more than one token [1].

Using an event-based PN model rather than a state-based TS model makes explicit

the relationship between events, is often more compact , and has some properties that can

be verified structurally—without expensive enumeration of all states [3].

2

2 Java Concurrency

We assume the reader has a basic knowledge of the Java programming language constructs

and concurrency APIs (the Thread class and Runnable interface). Since Java’s concur-

rency capability is rather broad, we define a subset of Java on which to focus. Corbett [2]

defined a subset of Java concurrency features that is centered around two common concur-

rency design patterns: the producer/consumer pattern and the observer pattern. The first

pattern uses mutual exclusion to control access to shared variables and the second pattern

highlights thread communication with wait()/notify()/notifyAll() calls. We adopt the

same assumptions as [2] for the subset of Java that we will focus on.

We also adopt the scheduling assumption that threads are scheduled arbitrarily by

the system thread scheduler and that there are no modifications of thread priority settings.

Additional thread methods are excluded because they can cause added complexity in the

concurrent model of the system. These methods include join(), yield(), suspend(),

resume(), and stop().

With multiple threads of execution, synchronization between threads that use the

same resources is a common problem. Java handles these issues through locks and the

synchronized keyword. Each object in Java has a lock, which can be obtained by any Java

thread. The synchronized keyword allows only one thread to enter a synchronized block

of code at a time.

3 Transition Systems from Java

Corbett [2] demonstrated that an FSM can be constructed from a Java source program

by using shape analysis. Shape analysis attempts to preserve the shape of common linked

3

structures in a program. Corbett’s work created a model builder, not a model extractor.

This forces the engineer to extract the relevant parts of the Java program and create the

necessary abstractions by hand before feeding the Java source into the model builder [2].

The model builder will accept the Java source and a property to verify, e.g. deadlock, and

will produce a Transition System model.

Initially, the abstract syntax tree (AST) of the program is constructed. A traversal of

this AST constructs a control flow graph (CFG) for the main() method and for each thread’s

run() method. Method calls and constructors are inlined as they are encountered, which

may produce an exponential increase in the number of statements. Each arc in the CFG is

a transformation that represents a bytecode instruction. Transformations may be marked

invisible if they will not change the meaning of the CFG with relation to the property being

verified. Invisible transformations are collapsed explicitly into a single visible transformation,

reducing the size of the state space and CFG. A depth-first search of the program’s state

space will generate the transitions for the TS model. At each state, a transition is generated

for each ready thread that represents the execution of that thread up to the next visible

transformation [2].

As an option when applying the model building approach just discussed, Corbett also

defined several state space reduction techniques in order to reduce the size of the model

constructed. These techniques include owned-variable reduction, protected-variable reduc-

tion, relock reduction, notify reduction and unlock reduction. The reductions are applied

to the CFGs that represent the program and approximate storage structure graphs (SSG)

are constructed to track all possible object reference paths through the heap at a particular

statement [2]. Shape analysis has been shown to have a worst-case running time of O(S2V 4)

and a worst-case space requirement of O(SV 2), where S is the number of statements after in-

4

lining all procedure calls and V is the number of variables and allocators. The reductions for

determining which transformations access owned versus protected variables have worst-case

running times of O(SV 2) and O(SV) respectively [2].

Corbett claims that despite the complexity of the algorithm as indicated, the average

cost of shape analysis is acceptable because SSGs are generally sparse, S and V refer to

the number of modeled statements (vs. all statements) and the overall complexity will be

dominated by the model building/checking step rather than the reduction of states [2]. This

research has also shown that all Transition Systems derived using the reductions described

preserve the accuracy of the model with respect to the property being examined.

4 Petri Nets from Transition Systems

Cortadella et al. have developed a method for synthesizing a Petri Net from a number of

Transition System models [3]. Their method builds upon the theory of regions which was

first described by Nielsen et al. in a paper about Elementary Transition Systems (ETS) [4].

Given a subset of states, a TS event can be characterized by whether it always enters, always

exits, is always internal, or is always external to that subset. A region is a subset of states

such that all transitions labeled with the same event have the same enter, exit, internal, or

external label with respect to that region. States may be split to make the labels work out

conveniently. The regions will become transition relations in a Petri Net [3]. An important

property of regions refined by Bernardinello et al. [5] is that

Property 1 every region can be represent as a union of disjoint minimal regions [3].

Synthesis of an elementary net from an ETS has been explored [4] and extending those

results to Petri Nets in particular is straightforward [3]. The extended algorithm generates

5

a saturated net where all regions are mapping to corresponding places. The net will have as

many places as regions. The events that enter and exit regions will become transitions. An

event that enters a region will become a transition with an arc to a place. An event that

exits a region will become a transition with an arc from a place to the transition.

Since all regions are mapped to places, the PN is saturated. Any ETS has a unique

saturated net. However, such a net is full of redundancy. Further, since all regions of a TS

must be considered and elementary checks must be performed on every state, the algorithm

has such a poor efficiency that it is impractical [3].

Using the the minimal region property (Property 1), the algorithm can be improved

to create a minimal saturated net. Cortadella et al. extended their result to create place-

irredundant and place-minimal Petri Nets [3].

Further, they found that they could extend their method so that not only can it derive

a PN from an ETS, but it can derive a PN from any TS that has a bisimilar ETS. They

called this class of transitions systems excitation-closed transition systems (ECTS). The

breakthrough in allowing and using ECTSs is that the required conditions can be efficiently

checked. Rather than being required to check for elementarity on every state in an ETS,

they can check for excitation-closure on every event. In concurrent systems, the number of

events is often much fewer than the number of states [3].

Figure 2 shows the framework they present for their implementation of a software

system that derives a PN from a TS.

The goals of the system were to achieve “good” results in reasonable time. A good

result is presumably useful for analysis but not necessarily optimal. Some compromises were

made to achieve this result. TS label splitting was done by considering regions that are

predecessors of an event (pre-regions). Merging minimal pre-regions is done with a greedy

6

place− minimalsplit− morphic
ECTS

place−
irredundant
PN

minimal
saturated
PNgeneration

of minimal
pre− regions

TS
label
splitting

removal of
redundant

merging
minimal

PN

pre− regions pre− regions

Figure 2: From [3], a framework for creating a PN from a TS

strategy that will not always yield an optimum their transformations to ensure that deadlock

and liveness properties are preserved in the extracted PN [3].

The system can be tuned depending on the desired use of the resultant PN. It can

produce PNs that are either somewhat-redundant in form but more comprehensible to human

users or maximally compact for efficient computer manipulation.

5 Concurrency Analysis with Petri Nets

Pezzè [1] has indicated that it “is always possible to represent an Ada program composed of

a fixed number of tasks by means of a safe [Petri] net.” We assume that this can be extended

to Java through the similarity in concurrency constructs between Ada and Java. One area

of Petri Net usage in concurrent system analysis is invariant analysis. This kind of analysis

represents a net as a set of equations and attempts to find integer solutions to the equations.

Invariant analysis can be used to analyze race conditions and deadlock. The analysis is

still exponential in the worst case and is also pessimistic for detecting deadlock. However, the

solutions may help to guide and prune a reachability analysis of the system [1]. Reachability

analysis can provide stronger assurance than invariant analysis for critical properties of

concurrent systems, although it can still be pessimistic by sometimes failing to accept a

correct program. The ability to execute both invariant analysis and reachability analysis on

the same Petri Net model of a concurrent system is a great advantage [1].

7

Deadlock detection, race detection, and other concurrency problems are known to be

theoretically NP-complete. This is often called the “state explosion problem” of reachability

analysis [1]. No implementation or model will be able to improve on the worst-case exponen-

tial resources (time or memory) required to solve these problems. However, many practical

problems have been shown to be solvable with reasonable resource usage. It is in the solu-

tion of these practical analysis problems that exploitation of various implementations and

models, such as Petri Nets, show useful performance and usability differences [3].

6 Conclusion and Future Plans

Corbett and a group at the University of Kansas have implemented an open-source software

system for the generation of a TS model from Java source code using the methods discussed

in Section 3. They call it Bandera. Cortadella and his fellow researchers have implemented

a software system called Petrify that is able to derive a Petri Net from a Transition system,

as discussed in Section 4. Source for Petrify is not publicly available. Interestingly, we see

no cross-references or citations between these groups of researchers.

Our aim is to link their systems together. We plan to write a new backend module

for the Bandera system that will write a transition system suitable for filtration through

the Petrify binary. The result will be a Petri Net suitable for further analysis by hand or

by another automated system that might, say, perform a reachability analysis for deadlock

detection.

We will implement a small classic concurrent problem in Java, both correctly and

incorrectly. We will then examine what information can be gleaned by hand inspection of

the Petri Net which results from our end-to-end process.

8

References

[1] M. Pezzè, R. N. Taylor, and M. Young, “Graph Models for Reachability Analysis of

Concurrent Programs,” ACM Transactions on Software Engineering and Methodology,

vol. 4, no. 2, pp. 171–213, Apr. 1995.

[2] J.C. Corbett, “Using Shape Analysis to Reduce Finite-state Models of Concurrent Java

Programs,” ACM Transactions on Software Engineering and Methodology, vol. 9, no. 1,

pp. 51–93, Jan. 2000.

[3] J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Deriving Petri Nets from

Finite Transition Systems,” IEEE Transactions on Computers, vol. 47. no. 8, pp. 859–

882, Aug. 1998.

[4] M. Nielsen, G. Rozenberg, and P. S. Thiagarajan, “Elementary Transition Systems,”

Theoretical Computer Science, vol. 96, no. 1, pp. 3–33, 1992.

[5] L. Bernardinello, G. De Michelis, K. Petruni, and S. Bigna, “On Synchronic Structure of

Transition Systems,” Proc. Int’l Workshop Structures in Concurrent Theory, pp. 69–84,

May 1995.

9

