
1

Modeling and Simulation of a Turbo Encoder

and Decoder for Wireless Communication

Systems

Sayantan Choudhury

2

Abstract

This report presents information about modeling and implementation of turbo codes. Turbo coding

is a very powerful error correction technique that has made a tremendous impact on channel coding in

the last few years. It outperforms all previously known coding schemes by achieving near Shannon limit

error correction using simple component codes and large interleavers. The iterative decoding mechanism,

recursive systematic encoders and use of interleavers are the characteristic features of turbo codes. The

use of turbo codes enhances the data transmission efficiency in digital communications systems. This

technique can also be used to provide a robust error correction solution to combat channel fading. The

entire turbo coding scheme consists of recursive systematic encoders,interleavers, puncturing and the

decoder. This report gives a brief overview of the various components of the turbo coding scheme,

analyzes the complexities of the most popular turbo decoding algorithms, describes a suitable model of

computation and discusses the various implementation methods of the maximum a posteriori (MAP)

algorithm.

Keywords

Turbo coding, forward error correction, interleaving, puncturing, iterative decoding, MAP decoding

3

I. Introduction

Today’s world thrives on information exchange. Hence the need of the day is that the

information be protected well enough to be transmitted over a noisy environment. This is

achieved by adding redundant bits to the information bit streams. If the purpose of adding

redundancy is just to detect errors and inform the sender to retransmit the information, it

is known as automatic repeat request (ARQ). Forward error correction (FEC) is another

way of adding redundancy to the information bit stream so that errors can be detected

and corrected thus preventing the need for retransmission. The price paid for adding such

redundancy is a faster transmission rate in order to send the same amount of information

bits per unit time implying a larger bandwidth requirement. The advantage however, is

that the Signal to Noise Ratio (SNR) can be reduced significantly (also referred to as

Coding Gain). In wireless systems, one of the most important performance criterion is

low power transmission as that can provide a longer battery life and lesser co-channel

interference.

From coding theory [1], it is known that by increasing the codeword length or the encoder

memory and using “good” codes, one can theoretically approach the limiting channel

capacity. However finding such a code and implementing such a decoder in real-time

has been an active area of research for a very long time. Turbo codes [2], [3] is a very

powerful error correcting technique, which enable reliable communication with Bit Error

Rate (BER) close to Shannon limit [4]. Turbo codes are in fact a parallel concatenation

of two recursive systematic convolutional codes. The fundamental difference between

convolution codes and turbo codes is that while for the former, performance improves by

increasing the constraint length, for turbo codes it has a small value which remains pretty

much constant. Moreover, it achieves a significant coding gain at lower coding rates. An

important factor for achieving this improvement is due to the “soft-input/ soft-output”

decoding algorithm to produce soft decisions.

The main motivation behind doing this project is to gain a deeper understanding of

turbo codes, learn ways to model it using an appropriate model of computation and to

do an optimized implementation of the turbo encoder and decoder. Turbo codes enable

reliable communication over power-constrained communication channels at close to Shan-

4

RSC Code C1

RSC Code C2

Interleaver

Data dk

Xk

Y1k

Y2k

Fig. 1. General structure of a rate 1/3 turbo encoder

non’s limit. However, a significant number of iterations are required to produce this result

leading to higher latency. Thus efficient implementation of turbo codes in order to meet

real-time constraints is an active area of research. The turbo encoder is described in

Section II. Interleaver design and puncturing is explained in Section III and IV respec-

tively. Section V gives an overview of the turbo decoder. Modeling and implementation

is described in Section VI. Some important applications and standards using turbo codes

are described in Section VII.

II. Turbo Encoder

The general structure of a turbo encoder is shown in Fig. 1. It consists of two rate

half Recursive Systematic Convolutional (RSC) encoders C1 and C2. It should be noted

that the trellis structure and free distance for the RSC and Non Systematic Convolutional

(NSC) codes are the same. The output sequences, however, are not the same for identical

input sequences. The N bit data block is first encoded by C1. The same data block is also

interleaved and encoded by C2.The main purpose of the interleaver is to randomize bursty

error patterns so that it can be correctly decoded. It also helps to increase the minimum

distance of the turbo code.

The RSC code can be obtained from a NSC by adding a feedback loop and setting one

5

of the output bits equal to the input bits. In order to increase the transmission efficiency,

puncturing can be used. Puncturing is removing certain bits from the output stream

according to a fixed pattern given by a puncturing matrix.

III. Interleaver Design

As mentioned earlier, the interleaver is a very important constituent of the turbo en-

coder. It spreads the bursty error pattern and also increases the free distance. Thus,

it allows the decoders to make uncorrelated estimates of the soft output values. The

convergence of the iterative decoding algorithm improves as correlation of the estimates

decreases.

The simplest interleaver is the “row-column” or “block” interleaver where the elements

are written row-wise and read column-wise. The “helical” interleaver writes the data

row-wise but reads diagonal-wise. There is also an “odd-even” interleaver, which has been

shown to give very good results [5]. In this interleaver the odd positions of the input

bits are encoded first. A pseudo-random interleaving of the input sequence follows this

and the even positions are now encoded. The output consists of the input sequence and

multiplexed sequence of odd and even positioned coded bits. The drawback of this scheme

is that some information bits will have two coded bits associated with them while others

won’t have any. Thus, this causes a non-uniform distribution of coding power across the

input bit stream. A solution for this problem is to use an “odd-even” type of interleaver

with an odd number of rows and columns as shown in [5].

Another type of interleaver is the “Simile” interleaver [6]. It places an additional restric-

tion: after encoding the sequences of information and interleaved bits, both the encoders

must be in the same state. This allows only one sequence of tail bits to cause trellis termi-

nation. This is done by dividing the whole block of N information bits into ν + 1 sequences

where ν is the memory length of the code. It is seen that the sequences to which the in-

formation bits belong and not the order of the individual bits in each sequence, determine

the final encoder state. Thus, as long as the interleaver doesn’t change the sequence to

which the original bits belong, both encoders will end in the same state and only one tail

will be required to drive the encoders to all zero state at the same instant.

6

IV. Puncturing

Puncturing [7] is a technique used to increase the code rate. A rate 1/3 encoder is

converted to a rate 1/2 encoder by multiplexing the two coded streams. The multiplexer

can choose the odd indexed outputs from the output of the upper RSC encoder and its even

indexed outputs from the lower one. In a more complicated system, puncturing tables are

used. An important application of puncturing is to provide unequal error protection where

relatively unimportant bits or during cleaner channel condition a lower rate coding is used

by puncturing the coded bits while for more important bits or noisy channel conditions,

higher rate coding can be used.

V. Turbo Decoder

An iterative decoding is proposed in [2], [3] which is basically a modification of the Bahl

decoding algorithm [8].The modification is necessary due to the recursive nature of the

encoders. The difference in this algorithm from the Viterbi algorithm [9] is that while the

former produces hard outputs, this one produces soft outputs. Thus instead of outputting

only 0 or 1, the output range is continuous and is a measure of the log-likelihood ratio of

every bit estimate. The iterative feedback scheme is shown in Fig. 2.

Decoder
DEC 1

Inter-
Leaving

Decoder
DEC2

Deinter-
leaving

Deinter-
leaving

Feedback Loop

DEMUX

Decoded Output

Z
k

x
k

y
k

d
k

y
1k y

2k

Le2 (d
k
)

L2 (dk)

L1 (dk)
L2 (dn)

Fig. 2. Turbo Decoder

The input to the decoder xk and yk are the punctured encoder outputs Xk and Yk

corrupted by two independent noises with the same variance . The demultiplexer selects

7

y1k when the transmitted sequence is Y1k and selects y2k when the transmitted sequence

is Y2k and sets it to zero for no transmission. The output of DEC1 (known as extrinsic

information of the decoder) is used by DEC2 to modify the confidence levels and thus

obtain a more accurate estimate of the transmitted message. The purpose of the interleaver

is same as before i.e., to de–correlate the error bursts. The output of DEC2 is fed back to

DEC1 and the process is repeated several times depending on the BER rate required for

the application.

VI. Modeling and implementation

Due to the dataflow intensive nature of the system, a synchronous dataflow graph (SDF)

[10] is ideal for modeling the system. The encoder and decoder can be modeled as SDF

blocks. The individual components of the encoder/decoder blocks are implemented as SDF

actors, each of which can be implemented in hardware or software. I plan to implement

them using assembly language for the TMS320C6711 DSK. The block used for puncturing

can be modeled using cyclo-static dataflow [11] since it does not behave as a strict SDF

actor. The detailed SDF model of the turbo decoder is shown in Fig. 3. It is a homogeneous

SDF graph.

MAP 1
Inter-
leaver

MAP 2
Deinterl-

eaver
Hard

Decision+ + +In1

In2

In3

out1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1111

1

1

1

11

Fig. 3. Turbo Decoder SDF Model

There are two main types of soft decision decoding algorithms which are commonly

used. The first one is a modified Viterbi algorithm but it produces soft outputs and hence

called, Soft Output Viterbi Algorithm (SOVA) [12]. The second type of algorithm is the

maximum a posteriori (MAP) algorithm. The detailed derivation of the MAP algorithm

can be found in [13]–[15]. The direct implementation of MAP is computationally intensive

and hence not feasible for real-time applications. In order to minimize the decoding

8

TABLE I

Decoder complexity comparison

Operation MAP Log-MAP Max-Log-MAP SOVA

add. 2× 2k × 2ν + 6 6× 2k × 2ν + 6 4× 2k × 2ν + 8 2× 2k × 2ν + 9

multipl. 5× 2k × 2ν + 8 2k × 2ν + 6 2× 2k × 2ν 2k × 2ν

max ops 4× 2ν − 2 4× 2ν − 2 2× 2ν − 2

table look-ups 4× 2ν − 2

exp. 2× 2k × 2ν

complexity, the logarithms of the state metrics are taken. This converts the multiplication

operation to additions (Log-MAP algorithm). The problem with the Log-MAP algorithm

is that now we have logarithms of sum of exponentials. This can be simplified using the

Jacobian logarithm [16], [17],

log(eL1 + eL2) = max(L1, L2) + log(1 + e|L1−L2|) (1)

Most implementations compute the maximum term and ignore the correction factor (Max-

Log-MAP algorithm). As suggested in [17], I will use a small lookup table for the correction

factors.

The complexity analysis [12] for a (n, k) convolutional code with memory order ν is

shown in Table I. It is evident that the Log-MAP is approximately 3 times more complex

than SOVA while the Max-Log-MAP is about twice as complex as SOVA. However, the

performance of MAP is about 0.5 dB better than SOVA at lower SNR and high BERs [16].

This is very important for turbo codes since the output BERs from the first stage of

iterative decoding is quite high and any improvement at this stage, leads to significant

overall performance improvements. A detailed comparison of the above algorithms in

terms of performance, throughput, complexity and power consumption can be obtained

in [18]. Another limitation of the MAP algorithm is the large memory requirement for the

state metrics. Due to the limited on-chip memory in an embedded processor, I will do a

sliding window implementation [19] with an overlap of 4− 6 times the constraint length.

9

VII. Applications

Applications of turbo codes include deep space communications, coding for ATM (Asyn-

chronous Transfer Mode) and wireless applications, fading channels, digital direct broad-

cast satellite services, CDMA (Code Division Multiple Access), channel equalization, com-

bined carrier estimation and decoding, wireless LAN, digital TV, cable modem, and DSL

(Digital Subscriber Line) systems. Turbo codes have replaced convolutional codes in

CDMA2000(3rd generation of IS-95 system) [20]. They have also been adopted in 3GPP

(3rd Generation Partnership Project) WCDMA (Wideband CDMA) and DVB-RCS (Dig-

ital Video Broadcast – Return Channel Satellite) systems. NASA’s next generation deep

space transponder will use turbo codes [21]. Fig 4 shows that at BER = 10−5 the turbo

Fig. 4. Turbo code performance with code rate r = 1/4. Figure from [22].

code is better than the (15,1/4) convolutional code, developed at the Jet Propulsion Lab-

oratory (JPL) for the Galileo mission, by 0.25 dB [22]. A more detailed list of applications

of turbo codes and standards using them can be found in [23].

References

[1] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-Interscience, August 1991.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting Coding And Decoding:

Turbo-Codes,” in ICC 1993, (Geneva, Switzerland), pp. 1064–1070, May 1993.

10

[3] C. Berrou and A. Glavieux, “Near Optimum Error Correcting Coding And Decoding: Turbo-Codes,” IEEE

Trans. on Communications, vol. 44, pp. 1261–1271, Oct. 1996.

[4] C. E. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vol. 27, pp. 379–

423 and 623–656, July and October 1948.

[5] S. A. Barbulescu and S. S. Pietrobon, “Interleaver Design for Turbo Codes,” Electronic Letters, vol. 30,

pp. 2107–2108, Dec 1994.

[6] S. A. Barbulescu and S. S. Pietrobon, “Terminating the Trellis of Turbo Codes in the Same State,” Electronic

Letters, vol. 31, pp. 22–23, Jan 1995.

[7] J. B. Cain, G. C. Clark, Jr., and J. M. Geist, “Punctured Convolutional Codes of Rate (n−1)/n and Simplified

Maximum Likelihood Decoding,” IEEE Trans. on Information Theory, vol. IT-25, pp. 97–100, Jan 1979.

[8] L. Bahl, J. Jelinek, J. Raviv, and F. Raviv, “Optimal Decoding of Linear Codes for Minimizing Symbol Error

Rate,” IEEE Trans. on Information Theory, vol. IT-20, pp. 284–287, Feb 1974.

[9] G. D. Forney, “The Viterbi Algorithm,” Proc. of the IEEE, vol. 61, pp. 268–278, Mar 1973.

[10] E. Lee and D. Messerschmitt, “Synchronous Data Flow,” Proc. of the IEEE, vol. 75, pp. 1235–1245, Sept

1987.

[11] S. A. Edwards, Languages for Digital Embedded Systems , ch. 12. Kluwer Academic Publishers, July 2000.

[12] B. Vucetic, J. Yuan, and J. Yuan, Turbo Codes - Principles and Applications. Kluwer Academic Publishers,

July 2000.

[13] J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary Block and Convolutional Codes,” IEEE

Trans. on Information Theory, vol. 42, pp. 429–445, March 1996.

[14] S. A. Barbulescu, Iterative Decoding of Turbo Codes and Other Concatenated Codes. PhD thesis, University

of South Australia, Feb 1996.

[15] S. Pietrobon and S. A. Barbulescu, “A Simplification of the Modified Bahl Decoding Algorithm for System-

atic Convolutional Codes,” in Int. Symp. on Information Theory and its Applications, (Sydney, Australia),

pp. 1073–1077, Nov 1994.

[16] S. S. Pietrobon, “Implementation and Performance of A Turbo/MAP Decoder,” Int. Journal of Satellite

Communications, vol. 16, pp. 23–46, 1998.

[17] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and Sub-Optimal Maximum A Posteriori Algorithms

Suitable for Turbo Decoding,” Europ. Trans. on Telecommun, vol. 8, pp. 119–125, Mar-Apr 1997.

[18] C. Edwards, C. Steilzvied, L. Deutsch, and L. Swanson, “Comparison of Different Turbo Decoder Realizations

for IMT-2000,” GLOBECOM ’99, vol. 5, pp. 2704–2708, Dec 1999.

[19] S. A. Barbulescu, “Sliding Window and Interleaver Design,” Electronic Letters, vol. 37, pp. 1299–1300, Oct

2001.

[20] “Physical Layer Standard for CDMA2000 Spread Spectrum Systems.” http://www.3gpp2.org/Public html/specs/

C.S0002-0_v1.0.pdf.

[21] C. Edwards, C. Steilzvied, L. Deutsch, and L. Swanson, “NASA’s Deep-Space Telecommunications Road

MAP,” TMO Progress Report 42-136, pp. 1–20, Feb 1999.

[22] D. Divsalar and F. Pollara, “Turbo Codes for Deep-Space Communications,” TDA Progress Report 42-120,

pp. 29–39, Feb 1995.

[23] S.A. Barbulescu and J.A. Torres and F. Hirzel and V. Demjaneko, “Turbo Codes 2000.” http://www. vo-

cal.com/white paper/CF-036.pdf, Jan 2001.

