
 1

Characterization of Native Signal Processing Extensions

Jason Law

Department of Electrical and Computer Engineering
University of Texas at Austin

Austin, TX 78712
jlaw@mail.utexas.edu

Abstract

Soon if not already, multimedia applications such as those that deal with the creation,
processing, and communication of digital images, digital audio, and digital video are
expected to become one of the dominant computing workloads [6]. Most modern
general-purpose processors employ a set of instruction extensions to their architecture to
enhance the performance of digital signal processing (DSP) and multimedia applications.
It is now possible to perform many tasks, which have in the past required the use of a
DSP, using only a general-purpose processor. This is known as Native Signal Processing
(NSP). Traditionally, creating code that takes full advantage of NSP extensions is a
difficult task that involves writing hand-tuned assembly code [1]. Evaluating the
effectiveness of NSP extensions is therefore complicated since it is not easy to use
popular benchmarks such as MediaBench, MiBench, or the test suites developed by
BDTI and EEMBC. This paper examines the performance benefits seen when using
SSE2 extensions on programs not originally tuned for NSP extensions.

 2

1 Introduction

Most modern general-purpose processor architectures now include some sort of

native signal processing (NSP) extensions. Intel first released MMX (MultiMedia

eXtensions) for its x86 ISA [4]. The MMX extensions on the Pentium and Pentium II

included only integer single-instruction-multiple-data (SIMD) instructions so Intel

quickly released another set of extensions called SSE (Streaming SIMD Extensions) for

the Pentium III that included many floating-point instructions [5]. In November of

2000, Intel released the latest extension to its x86 ISA, Streaming SIMD Extensions 2

(SSE2).

Introduced with the Pentium 4, SSE2 represents a complete overhaul of all

previous NSP extensions to the x86 architecture as well as the addition of several new

instructions. SSE2 is a substantial evolution of SSE and MMX [5]. SSE2 enables the

execution of two double-precision 64-bit floating-point operations per clock; while the

original SSE only allowed four 32-bit single-precision operations. SSE2 also extends the

original MMX integer instructions from 64 bits to 128 bits. This allows two 64-bit

integer operations to be performed at once. Also included in SSE2 are new cache control

instructions that allow extensive control of the data cache to minimize cache pollution,

and new data prefetch instructions to exploit concurrency between the memory and

execution pipelines and to hide memory latency. Using these tools, it should be easier to

characterize SSE2 than it was to characterize MMX and SSE.

The main drawback to using NSP extensions is that it is often difficult to write

code to take advantage of the extensions. Much time and effort is required to develop

code using assembly language, compiler intrinsics, and specialized libraries. This paper

 3

will examine the performance improvements seen when compiling code written without

the intention of using SSE2 extensions on a compiler that can intelligently convert

vectorizable code into SSE2 code.

In this paper, section 2 describes the benchmark programs. Section 3 describes

the methodology used to conduct the experiment. Section 4 analyzes the results, and

section 5 concludes the paper.

2 Benchmarks

In this study, four benchmarks consisting of two signal processing kernels and

two applications were examined in detail. Table 1 provides gives a brief outline of each

benchmark. The rest of this section provides more detail for each of the benchmarks.

Table 1: Benchmark Overview

Benchmark Description
FIR filter 30-tap FIR filter, 64-bit coefficients, processes 1000000 samples
Dotprod Calculates dot product of two 2048 arrays 100000 times
Lame3.70 Converts 30 second .wav to 128kb/s .mp3
JPEG Compress and decompress 780k .ppm to .jpg

2.1 Kernels

Finite Impulse Response (FIR) Filters allow only certain signal components to

pass through to the output unchanged. This benchmark implements a 30-tap low pass

filter and processes 1000000 samples. Both versions of the FIR filter operate on 64-bit

floating-point data. FIR filters are often used in speech and audio processing, modem

channel equalization, and general signal filtering.

 4

Dotprod performs a matrix multiplication on two randomly initialized 2048

element arrays. This calculation is performed 10000 times in the benchmark. The

benchmark operates on 64-bit floating-point data. Most types of matrix math operations

should benefit greatly from vectorization. SSE2 specifically should handle 64-bit data

well.

2.2 Applications

Lame3.70 is an MP3 encoder released under the GNU public license. In this

benchmark a thirty second .wav format audio file is converted to .mp3 format at 128kb/s,

44.1kHz. MP3 encoders and decoders represent a commonly used desktop signal

processing application.

JPEG is a standard, lossy image compression format. The algorithm it uses for

compression and decompression is commonly used to view images embedded in

documents such as webpages. In the benchmark a color image is compressed and then

decompressed.

3 Methodology

All programs were compiled using the Intel C/C++ compiler for Linux.

Command line parameters to the compiler allow the inclusion of SSE2 instructions in the

compilers output. This allowed the use of the Intel compiler for both versions of the

benchmarks. A tool called Abyss allowed access to the performance monitoring

counters, which were used to collect data during the actual execution of the benchmarks.

 5

3.1 Intel Compilers

The Intel C/C++ Compiler Version 6.0 for Linux was used to compile all of the

benchmarks. Command line options passed to the compiler allow one to indicate the

level of optimization desired. This feature was exploited to produce the benchmarks

containing SSE2 code as well as the non-SSE2 versions. Compilation can be targeted at

a specific Intel microprocessor architecture. In this study, the code that does not contain

SSE2 was compiled by not passing any targeting parameters to the compiler other than

the standard optimization parameter –O3. The code containing the SSE2 optimizations

was compiled by passing a target parameter specifying a Pentium 4 processor and the

standard optimization parameter –O3.

There are four methods to produce code optimized for SSE2. The first and the

most time consuming is to write in assembly. This has the possibility of giving the

largest performance gains. A less painful, but not as effective method is to use compiler

intrinsics. These special macro-like functions enable the user to code at higher level, but

still incorporate highly optimized assembly routines. The third traditional level is to use

vector classes provided by the processor vendor, that the vendor’s compiler can assemble

into highly optimized code. The last method is to use a compiler that can

“autovectorize”. This last method is the easiest for the user, but has the least potential for

showing speedup.

3.2 Brink and Abyss

The data gathered in this experiment was taken using the performance monitoring

counters on the Pentium 4. Access to the performance monitoring counters was provided

 6

by a tool called Abyss. The tool consists of a modular device driver that can be loaded

into the Linux kernel while it is running. Brink is a perl script front-end to the kernel

module (Abyss) that allows the user to specify what events to monitor and which

program to run.

3.3 Metrics

The primary metric used in this study is execution time measured in clock cycles.

Speedup is quantified as the execution time of the SSE2 code divided by the execution

time of the non-SSE2 code. The number of dynamic instructions executed and the

percent of instructions that are classified as SSE2 instructions is also useful to examine.

4 Analysis of Results

 The results found in Table 2 show the number of dynamic instructions and micro-

ops executed. Also shown in Table 2 is the percent of all instructions executed that are

SSE3 instructions. These include: packed and scalar vector operations on SSE2

datatypes, moves between SSE2 registers, data movement into and out of SSE2 registers,

and prefetch instructions.

 Table 3 shows the execution time in clock cycles of both versions of each

benchmark. It also shows the speedup of the SSE2 enabled version over the non-SSE2

version.

 7

Table 2: Benchmark Instruction Characteristics

Benchmark Dynamic Instructions Dynamic Micro-ops Percent SSE2
Instructions

FIR 7302335228 9204025397
FIR.SSE2 4402070463 5903577025 77.237
Dotprod 1436642154 2052902022
Dotprod.SSE2 491722432 902977687 72.681
Lame 1056537431 1551707605
Lame.SSE2 968832088 1330446825 62.279
JPEG 135017200 206559406
JPEG.SSE2 113837606 150085966 1.5

4.1 Kernel Performance

 Kernel performance was disappointing. Dotprod showed significant speedup.

The speedup of FIR was disappointing however. Even though, both kernels showed a

speedup a larger improvement was expected. Especially noting that around two-thirds of

the instructions executed in both cases were SSE2 instructions it is disappointing to see

such a low speedup. The non-SSE2 version of the kernels were compiled with the

highest level of optimization other than SSE2 extensions and some loop unrolling did

occur. This might account for the lack of a significant speedup.

4.2 Application Performance

 The applications also showed a speedup that was less than or equal to 2. This is

not as disappointing as it was for the kernels. Both applications required no changes be

made to the source code. Lame was dominated by file I/O. The .wav file that it encodes

to .mp3 is 2.5 megabytes and the output file is 0.5 megabytes. The most surprising result

is that with only 1.5 percent of SSE2 instructions JPEE is able to have a speedup of 2.

 8

Table 3: Benchmark Execution Characteristics

Benchmark Execution Time Speedup
FIR 4409992088
FIR.SSE2 3870847952 1.139
Dotprod 1760063740
Dotprod.SSE2 880663052 2.362
Lame 1972419120
Lame.SSE2 1410014448 1.398
JPEG 352719592
JPEG.SSE2 176322068 2.000

5 Conclusions and Future Work

 I analyzed the performance gains found when using SSE2 extensions on two DSP

kernels and two applications on a Pentium 4 processor. Speedup and dynamic instruction

counts were used to evaluate the performance gains due to native signal processing

enhancements. I observed that:

• A speedup is seen when using SSE2, even with code that was not written

with the intention of using SSE2.

• SSE2 seems well suited for applications that require 64-bit floating-point

precision in computations.

• The effort spent tuning an application to use SSE2 is proportional to the

performance gain realized.

Future work along these lines should include the use of the vector class libraries

and the new signal processing libraries recently released by Intel. It would also be

helpful to look at other application and different types of kernels.

 9

References

 [1] R. Bhargava, L.K. John, B.L. Evans, R. Radhakrishnan, “Evaluating MMX Technology using DSP and
Multimedia Applications,” Proc. 31st Annual ACM/IEEE International Symposium on Microarchitecture,
1998, pp.37-46.

[2] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems”, Proc. 30th Annual ACM/IEEE International Symposium on
Microarchitecture, 1997, pp 330-335.

[3] D. Talla, L. John, V. Lapinski, and B. Evans, “Evaluating Signal Processing and Multimedia
Applications on SIMD, VLIW and Superscalar Architectures”, Proc. IEEE International Conference on
Computer Design, 2000.

[4] A. Peleg and U. Weiser, “The MMX Technology Extension to the Intel Architecture,” IEEE Micro,
vol.16, no. 4, pp 42-50, Aug. 1996.

[5] S. Raman, V. Pentkovski, and J. Keshava, “Implementing Streaming SIMD Extensions on the Pentium
III Processor,” IEEE Micro, vol. 33, no. 4, July 2000.

[6] P. Ranganathan, S. Adve, N.P. Jouppi, “Performance of Image and Video Processing with General-
Purpose Processors and Media ISA Extensions,” Proc. of the 26th International Symposium on Computer
Architecture, 1999, pp.124-135

[7] R.B. Lee, “Multimedia Extensions for General-Purpose Processors,” IEEE Workshop on Signal
Processing Systems, 1997, pp. 9-23.

[8] T.M. Conte, P.K. Dubey, M.D. Jennings, R.B. Lee, A. Peleg, S. Rathnam, M. Schlansker, P. Song, A.
Wolfe, “Challenges to Combining General-Purpose and Multimedia Processors,” IEEE Computer, Dec.
1997, vol.30, no.12 p.33-7.

[9] M.R. Guthaus, J. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown, “MiBench: A free,
commercially representative embedded benchmark suite,” IEEE Workshop on Workload Characterization,
2001, pp. 3-14.

[10] “Intel(R) Software College-Streaming SIMD Extensions 2 (SSE2),”
http://developer.intel.com/software/products/college/ia32/sse2, March 2002.

[11] “EEMBC - Embedded Microprocessor Benchmarking Consortium,”
http://www.eembc.org, March 2002.

[12] “Berkeley Design Technology, Inc. -- Independent DSP Analysis - Optimized DSP Software,”
http://www.bdti.com, March 2002.

[13] BDTi, "Evaluating DSP Processor Performance," http://www.bdti.com/articles/benchmk_2000.pdf,
March 2002.

