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Abstract 
 
Soon if not already, multimedia applications such as those that deal with the creation, 
processing, and communication of digital images, digital audio, and digital video are 
expected to become one of the dominant computing workloads [6].  Most modern 
general-purpose processors employ a set of instruction extensions to their architecture to 
enhance the performance of digital signal processing (DSP) and multimedia applications.  
It is now possible to perform many tasks, which have in the past required the use of a 
DSP, using only a general-purpose processor.  This is known as Native Signal Processing 
(NSP).  Traditionally, creating code that takes full advantage of NSP extensions is a 
difficult task that involves writing hand-tuned assembly code [1].  Evaluating the 
effectiveness of NSP extensions is therefore complicated since it is not easy to use 
popular benchmarks such as MediaBench, MiBench, or the test suites developed by 
BDTI and EEMBC.  This paper examines the performance benefits seen when using 
SSE2 extensions on programs not originally tuned for NSP extensions.    
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1 Introduction 

Most modern general-purpose processor architectures now include some sort of 

native signal processing (NSP) extensions.  Intel first released MMX  (MultiMedia 

eXtensions) for its x86 ISA [4].  The MMX extensions on the Pentium and Pentium II 

included only integer single-instruction-multiple-data (SIMD) instructions so Intel 

quickly released another set of extensions called SSE (Streaming SIMD Extensions) for 

the Pentium III that included many floating-point instructions [5].    In November of 

2000, Intel released the latest extension to its x86 ISA, Streaming SIMD Extensions 2 

(SSE2).   

Introduced with the Pentium 4, SSE2 represents a complete overhaul of all 

previous NSP extensions to the x86 architecture as well as the addition of several new 

instructions.  SSE2 is a substantial evolution of SSE and MMX [5].  SSE2 enables the 

execution of two double-precision 64-bit floating-point operations per clock; while the 

original SSE only allowed four 32-bit single-precision operations.  SSE2 also extends the 

original MMX integer instructions from 64 bits to 128 bits.   This allows two 64-bit 

integer operations to be performed at once.  Also included in SSE2 are new cache control 

instructions that allow extensive control of the data cache to minimize cache pollution, 

and new data prefetch instructions to exploit concurrency between the memory and 

execution pipelines and to hide memory latency.  Using these tools, it should be easier to 

characterize SSE2 than it was to characterize MMX and SSE.   

The main drawback to using NSP extensions is that it is often difficult to write 

code to take advantage of the extensions.  Much time and effort is required to develop 

code using assembly language, compiler intrinsics, and specialized libraries.  This paper 
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will examine the performance improvements seen when compiling code written without 

the intention of using SSE2 extensions on a compiler that can intelligently convert 

vectorizable code into SSE2 code.  

In this paper, section 2 describes the benchmark programs.  Section 3 describes 

the methodology used to conduct the experiment.  Section 4 analyzes the results, and 

section 5 concludes the paper.   

 

2 Benchmarks 

In this study, four benchmarks consisting of two signal processing kernels and 

two applications were examined in detail.  Table 1 provides gives a brief outline of each 

benchmark.  The rest of this section provides more detail for each of the benchmarks. 

 
Table 1: Benchmark Overview 

 
Benchmark Description 
FIR filter 30-tap FIR filter, 64-bit coefficients, processes 1000000 samples 
Dotprod  Calculates dot product of two 2048 arrays 100000 times 
Lame3.70 Converts 30 second .wav to 128kb/s .mp3 
JPEG Compress and decompress 780k .ppm to .jpg 

 
 

2.1 Kernels 

Finite Impulse Response (FIR) Filters allow only certain signal components to 

pass through to the output unchanged.  This benchmark implements a 30-tap low pass 

filter and processes 1000000 samples.  Both versions of the FIR filter operate on 64-bit 

floating-point data.  FIR filters are often used in speech and audio processing, modem 

channel equalization, and general signal filtering.   
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Dotprod performs a matrix multiplication on two randomly initialized 2048 

element arrays.  This calculation is performed 10000 times in the benchmark.  The 

benchmark operates on 64-bit floating-point data.  Most types of matrix math operations 

should benefit greatly from vectorization.  SSE2 specifically should handle 64-bit data 

well. 

 

2.2 Applications 

Lame3.70 is an MP3 encoder released under the GNU public license.  In this 

benchmark a thirty second .wav format audio file is converted to .mp3 format at 128kb/s, 

44.1kHz.  MP3 encoders and decoders represent a commonly used desktop signal 

processing application. 

JPEG is a standard, lossy image compression format.  The algorithm it uses for 

compression and decompression is commonly used to view images embedded in 

documents such as webpages.  In the benchmark a color image is compressed and then 

decompressed. 

 

3 Methodology 

All programs were compiled using the Intel C/C++ compiler for Linux.  

Command line parameters to the compiler allow the inclusion of SSE2 instructions in the 

compilers output.  This allowed the use of the Intel compiler for both versions of the 

benchmarks.  A tool called Abyss allowed access to the performance monitoring 

counters, which were used to collect data during the actual execution of the benchmarks.   
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3.1 Intel Compilers 

The Intel C/C++ Compiler Version 6.0 for Linux was used to compile all of the 

benchmarks.  Command line options passed to the compiler allow one to indicate the 

level of optimization desired.  This feature was exploited to produce the benchmarks 

containing SSE2 code as well as the non-SSE2 versions.  Compilation can be targeted at 

a specific Intel microprocessor architecture.  In this study, the code that does not contain 

SSE2 was compiled by not passing any targeting parameters to the compiler other than 

the standard optimization parameter –O3.  The code containing the SSE2 optimizations 

was compiled by passing a target parameter specifying a Pentium 4 processor and the 

standard optimization parameter –O3. 

There are four methods to produce code optimized for SSE2.  The first and the 

most time consuming is to write in assembly.  This has the possibility of giving the 

largest performance gains.  A less painful, but not as effective method is to use compiler 

intrinsics.  These special macro-like functions enable the user to code at higher level, but 

still incorporate highly optimized assembly routines.  The third traditional level is to use 

vector classes provided by the processor vendor, that the vendor’s compiler can assemble 

into highly optimized code.  The last method is to use a compiler that can 

“autovectorize”.  This last method is the easiest for the user, but has the least potential for 

showing speedup.     

 

3.2 Brink and Abyss 

The data gathered in this experiment was taken using the performance monitoring 

counters on the Pentium 4.  Access to the performance monitoring counters was provided 
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by a tool called Abyss.  The tool consists of a modular device driver that can be loaded 

into the Linux kernel while it is running.  Brink is a perl script front-end to the kernel 

module (Abyss) that allows the user to specify what events to monitor and which 

program to run.   

 

3.3 Metrics 

The primary metric used in this study is execution time measured in clock cycles.  

Speedup is quantified as the execution time of the SSE2 code divided by the execution 

time of the non-SSE2 code.  The number of dynamic instructions executed and the 

percent of instructions that are classified as SSE2 instructions is also useful to examine.   

 

4 Analysis of Results 

 The results found in Table 2 show the number of dynamic instructions and micro-

ops executed.  Also shown in Table 2 is the percent of all instructions executed that are 

SSE3 instructions. These include: packed and scalar vector operations on SSE2 

datatypes, moves between SSE2 registers, data movement into and out of SSE2 registers, 

and prefetch instructions.   

 Table 3 shows the execution time in clock cycles of both versions of each 

benchmark.  It also shows the speedup of the SSE2 enabled version over the non-SSE2 

version.   

 
 
 
 
 
 



 7 

Table 2: Benchmark Instruction Characteristics 
 

Benchmark Dynamic Instructions Dynamic Micro-ops Percent SSE2 
Instructions 

FIR 7302335228 9204025397  
FIR.SSE2 4402070463 5903577025 77.237 
Dotprod 1436642154 2052902022  
Dotprod.SSE2 491722432 902977687 72.681 
Lame 1056537431 1551707605  
Lame.SSE2 968832088 1330446825 62.279 
JPEG 135017200 206559406  
JPEG.SSE2 113837606 150085966 1.5 
 
4.1 Kernel Performance 

 Kernel performance was disappointing.  Dotprod showed significant speedup.  

The speedup of FIR was disappointing however.  Even though, both kernels showed a 

speedup a larger improvement was expected.  Especially noting that around two-thirds of 

the instructions executed in both cases were SSE2 instructions it is disappointing to see 

such a low speedup.  The non-SSE2 version of the kernels were compiled with the 

highest level of optimization other than SSE2 extensions and some loop unrolling did 

occur.  This might account for the lack of a significant speedup. 

 

4.2 Application Performance 

 The applications also showed a speedup that was less than or equal to 2.  This is 

not as disappointing as it was for the kernels.  Both applications required no changes be 

made to the source code.  Lame was dominated by file I/O.  The .wav file that it encodes 

to .mp3 is 2.5 megabytes and the output file is 0.5 megabytes.  The most surprising result 

is that with only 1.5 percent of SSE2 instructions JPEE is able to have a speedup of 2.   
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Table 3: Benchmark Execution Characteristics 
 
Benchmark Execution Time Speedup 
FIR 4409992088  
FIR.SSE2 3870847952 1.139 
Dotprod 1760063740  
Dotprod.SSE2 880663052 2.362 
Lame 1972419120  
Lame.SSE2 1410014448 1.398 
JPEG 352719592  
JPEG.SSE2 176322068 2.000 
 
5 Conclusions and Future Work 

 I analyzed the performance gains found when using SSE2 extensions on two DSP 

kernels and two applications on a Pentium 4 processor.  Speedup and dynamic instruction 

counts were used to evaluate the performance gains due to native signal processing 

enhancements.  I observed that:  

• A speedup is seen when using SSE2, even with code that was not written 

with the intention of using SSE2. 

• SSE2 seems well suited for applications that require 64-bit floating-point 

precision in computations. 

• The effort spent tuning an application to use SSE2 is proportional to the 

performance gain realized. 

 

Future work along these lines should include the use of the vector class libraries 

and the new signal processing libraries recently released by Intel.  It would also be 

helpful to look at other application and different types of kernels. 
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