Characterization of Native Signal Processing Extensions

Jason Law

EE382C Embedded Software Systems
Spring 2002

The Problem Statement

- Intel's MMX and SSE are fairly well understood
 - MMX: [Bhargava 1998] SSE: [Godbole 2000]
- Intel developed new extensions SSE2
 - 144 new instructions, widen MMX registers to 128 bit
 - Includes data prefetch instructions
- How well does SSE2 work?
 - Is it easy to write code that efficiently uses SSE2?
 - Is there a speedup over SSE and MMX?

Native Signal Processing

- NSP extensions incorporate SIMD into older architectures
 - SIMD takes advantage of data level parallelism
 - One SIMD instruction can do the work of many scalar instructions
 - Significant speedup seen for many DSP type algorithms
 - FFT, FIR filters, matrix math, convolutions, etc.
- Extending an architecture for NSP causes several problems
 - Compilers are not very good at utilizing latest features
 - SIMD does not help some algorithms
 - Extensions vary greatly across architectures and manufacturers

Solution

- Several benchmark suites exist that I pulled from:
 - Mediabench, MiBench, BDTI's suite, and EEMBC's suite
 - MiBench runs under Linux, need a good API to measure
- Test C and assembly kernels and multimedia applications
 - FFT, FIR filters, MPEG encoders/decoders, MP3 players, etc.
 - Applications can be run under Windows and measured with Vtune
- Setup requires root/administrator access
 - Use Vtune or API to record hardware performance monitor data and then analyze offline
 - Look at data prefetch characteristics
 - Execution time, number of SSE2 instructions, etc.
- Models of computation:
 - Kernels can be modeled as SDF or BDF
 - Applications can be implemented as process networks

Results

- Linux performance monitoring tools have problems with Pentium 4!
- MiBench successfully runs
 - Need to instrument and analyze
- Kernels are written
 - Need to instrument and analyze
- Applications in Windows have been selected
 - Quake 3 Demo
 - Flask DivX video encoder/decoder
 - Canon .wav to .mp3 converter

Conclusions

- Performance monitoring API's need to be updated to work with Pentium 4 and Linux
 - Currently the only reliable method I have found is to use Vtune and Windows
 - Pentium 4 has 18 counters, Pentium 3 has 2 counters
- Code generation easiest with Intel C/C++ compiler
 - This works well for both Windows and Linux, at least as far as I can tell
- Deliverables
 - Investigation of speedup of SSE2 over SSE and MMX