System Modeling and Implementation of MPEG4 Encoder Using Fine-Granular-Scalability Framework

EE 382C Embedded Software Systems Dr. Brian L. Evans Team: Wei Li and Zhenxun Xiao

Scalability Problem

• Purposes of Internet Streaming video

- provide quality of service through channels of different bandwidths
- provide quality of service to receivers with different processing capability
- provide quality of service under best-effort IP network

• Scalable profiles in MPEG2 (base layer & enhancement layer)

- Data partitioning
- SNR Scalability
- Spatial Scalability
- Temporal Scalability

• These solutions can not solve scalability problem completely

- They are still oriented to specific bandwidth
- The receiver needs all the information from enhancement layer, otherwise, it can not use it at all

Solution: FGS with bit-plane coding

• FGS framework in MPEG4

- FGS: fine granular scalability
- Base layer uses non-scalable coding to reach the lower bound of the bitrate range
- Enhancement layer is to code the difference between the original picture and the reconstructed picture using bit-plane coding of the DCT coefficient
- Bit stream of FGS enhancement layer may be truncated into any number of bits.
- Being able to enhance base layer using partial information from enhancement layer
- The limited bandwidth can be used to transmit the bits which influence the image quality most
- Key issue: bit-plane encoding

Bit-plane Coding

Compared to run-level coding

- Code bit planes starting from the most significant bit
- Coded content is scalable
 - Based on bit plane
- Coding is more efficient
 - all zero bit plane is represented by a special symbol All-ZERO
 - bit planes coding are more
 efficient than conventional RLC
 (column by column)

Model and Implementation

- Video encoder is data intensive application
- Also, data flows in single rate
- Homogeneous SDF model
- Development environment
 Ptolemy
- Starting Point
 - referential implementation of MPEG2 (MSSG)
- Granularity consideration (why so coarse?)
 - Buffer management mechanism in Ptolemy
 - Want to be more generic, since MPEG4's new commercial model

Evaluation and Results

Study the trade-off of FGS features

quality vs. overhead

Test case

From referential MPEG2 implementation of MSSG Picture quality 8-bit,

128 x 128 grayscale

Base	8 bit	7 bit	6 bit	5 bit
	planes	planes	planes	planes
Origin	4 bit	3 bit	2 bit	1 bit
	planes	planes	planes	planes

Conclusion and Future Work

- Implemented a video encoder with FGS feature, similar work has been carried with H.263+ too
- SDF is a good modeling language for multi-rate data intensive application
- Can we abstract the model and provide a generic model that can utilize FGS feature with all scalability profiles?