
EE 382C Embedded Software Systems
Dr. Brian L. Evans
Team: Wei Li and Zhenxun Xiao
Scalability of Streaming Media Over the Internet

- **Purpose**
 - provide quality of service through channels with various bandwidths
 - provide quality of service to receivers with different processing capabilities
 - provide quality of service over best-effort IP network

- **Scalable profiles in MPEG2 (base layer & enhancement layer)**
 - data partitioning
 - SNR Scalability
 - spatial Scalability
 - temporal Scalability

- **FGS framework in MPEG4**
 - FGS: fine granular scalability
 - Being able to enhance base layer using partial information from enhancement layer
 - Key issue: bit-plane encoding
Bit-plane Encoding

Compare to run-level encoding
- Coded content is scalable
 - Based on bit plane
- Coding is more efficient
 - Do not need to code the highest all zero bit planes
 - Bit plane is more suitable for VLC coding

<table>
<thead>
<tr>
<th>DCT coefficients</th>
<th>Bit Plane</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td>(0,1)</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0 0</td>
<td>(4,0) (5,1)</td>
</tr>
</tbody>
</table>

MSB

LSB
Synchronous Data Flow (SDF) Model for MPEG4 with SNR Scalability Profile Using FGS Framework

Target: QCIF (176 X 144)
DCT: discrete cosine transform (8 x 8); IDCT: inverse discrete cosine transform; Q: quantization; Q^-1: inverse quantization; CP: clipping; FM: find maximum significant bit in bit-plane; BP: bit-plane VLC; IN: input block, frame is input data type; OUT: output block, an encoded bit stream for two frames; MB: macroblock, prepare for DCT; DCPE: DC coefficient predication encoding block; ACE: AC coefficients coding block; FA: frame accumulation block; ME: motion estimation block; MC: motion compensation block; DA: DC/AC coefficient encoding block