
Predictive Block Data
ow Model

for Parallel Computation

Final Report

EE382C: Embedded Software Systems

Prof. B. L. Evans

Submitted by :

Vishal Mishra and Kursad Oney

May 8, 2002

Abstract

Data
ow architecture as a concept has been around since the 1970s for parallel com-

putation. In data
ow machines, the hardware is optimized for �ne-grain data-driven

parallel computation. The architecture can tolerate long unpredictable communication

delays and supports generation and coordination of parallelism directly in the hard-

ware. We propose a new coarse-grained data
ow model of computation for parallel

architectures named Predictive Block Data
ow (PBD) due to its predictive capacity

and processing of instructions in blocks instead of the �ne grain model of one machine

instruction. We have simulated the high level machine architecture and implemented

two algorithms, quicksort and Dijkstra's single source shortest path, to display the high

degree of parallelism that our model can exploit in both highly recursive and irregular

data structures.

1 Introduction

Data
ow is an intuitively appealing, simple yet powerful model of parallel computation. In

data
ow architectures there is no concept of a program counter corresponding to conventional

sequential program models. The data
ow model describes computations in terms of locally

controlled events, where each event corresponds to the \�ring" of a block. A block can be

a single instruction or a sequence of instructions. A block �res when all of the inputs it

requires are available.

Dennis [1] developed the model of data
ow schemas, building on work by Karp and Miller

[2]. These data
ow graphs evolved from a method for designing and verifying operating

systems to a base language for a new architecture. The �rst designs for such machines were

made at MIT in the early 1970s by Dennis and Misunas [3] and Rambaugh [4]. These designs

use data
ow graphs [5] to represent and exploit the parallelism in programs.

The failure of the original data
ow machines led to a new wave of hybrid multithreaded

machines. It is argued that von Neumann and data
ow machines are not, in fact, orthogonal

but rather sit on opposite ends of a spectrum of architectures. These hybrid architectures

combine features of von Neumann and Data
ow.

We believe that the recent advances in chip fabrication have once again made the data
ow

concept important for massively parallel architectures (MPA). The transistor size is becoming

smaller and we can �t more transistors on a single chip. This allows us to have multiple

processors with very low communication delays on one chip. Also, presently most programs

have been implemented for sequential machines and do not exploit the inherent parallelism

in programs. On the other hand, data
ow architectures expose parallelism in programs and

are ideally suited for parallel programming models. We propose a model comprising of a

2-D multiprocessor array con�guration on a single chip. In section 3 we describe our model

of computation, which is a dynamic data
ow model with self scheduling nodes. Section 4

describes our simulation model along with the implementation details. We present the results

of our simulation of quicksort and Dijkstra's single source shortest path SSSP in Section 5

and �nally the conclusions are laid out in Section 6.

2 Background Research

Data
ow research made great strides since the seminal paper on data
ow graphs by Dennis

[5]. In a Dennis data
ow graph, operations are speci�ed by actors (or nodes) that are enabled

only when all the actors that produce required data have completed their execution. The

1

dependence relationships between pair of actors are de�ned by the arcs of a graph, which

represent results forwarding by an actor to successor actors, and by the �ring rules, which

specify exactly what data is required for an actor to �re.

There are two forms of data
ow architecture; static and dynamic. In static data
ow the

arc connecting one instruction to another can contain only a single result value (a token)

from the source instruction. There can be only one instance of a data
ow actor in execution

at any time. Thus concurrent reactivation of nodes (or actors) is not permitted, and hence,

static systems are restricted to implementing loops and cannot accommodate recursion. In

dynamic data
ow, code-copying or dynamic tagging is used to permit recursive reactivation.

In dynamic tagging, tags are conceptually or actually associated with tokens so that tokens

associated with di�erent activations of an actor may be distinguished. This enables arcs to

simultaneously carry multiple tokens, thereby exposing the existing parallelism.

Due to the inherently parallel nature of data
ow execution, data
ow computers pro-

vide an elegant solution to the two fundamental problems [6] of von Neumann computers,

namely memory latency and synchronization overhead. Latency is tolerated by dynamic

switching between ready computation threads, whereas synchronization is supported in

hardware, which has low overhead. Our model employs some ideas from three well researched

early data
ow machines. The MIT Tagged Token Data
ow Architecture (TTDA) [7] has

I-structure storage units, which reside in global memory and can be addressed in global

address space. The main characteristic of TTDA is that each token is tagged with a context

identi�er (format< context; destination instr:; data >) that speci�es the activation to which

the token belongs. These tokens are matched at the destination node by wait-match units,

which act as rendezvous points for pairs of arguments for dyadic operators. The Manchester

Prototype Data
ow Computer [8] also employs dynamic tagging like TTDA for identifying

iteration level and implementing recursion by matching tokens by an associative lookup. The

Monsoon machine replaces the associative waiting-matching store of the above machines by

an explicitly managed directly addressed token store [9]. It is an Explicit Token Store (ETS)

model with the central idea that storage for tokens is dynamically allocated in sizable blocks.

When a function is invoked, an activation frame is allocated explicitly to provide storage for

all tokens generated by the invocation. A token now comprises of a value, a pointer to the

instruction to execute (IP) and a pointer to an activation frame(FP).

It has been speculated that there exists some optimum point between the two extremes

i.e. a new hybrid model which synergistically combines features of both von Neumann and

Data
ow, as well as exposes parallelism at a desired level.

Based on his research on the MIT Dynamic TTDA and the experience gained by [10],

2

Iannucci combined data
ow ideas with sequential thread execution to de�ne a hybrid com-

putation model [11]. P-RISC [12] explores the possibility of constructing a multithreaded

architecture around a RISC processor. Nikhil and Arvind's P-RISC model split the complex

data
ow instructions into separate synchronization, arithmetic and fork/control instructions,

eliminating the necessity of presence bits on the token store (or frame memory) as proposed

in the Monsoon machine [9]. StarT [13] is a successor of the Monsoon project and retained

the latency-hiding features of the Monsoon split-phase global memory operations while

being compatible with conventional von Neumann MPA's. Inter-node traÆc consists of

a tag (called continuation, a pair comprising a context and instruction pointer). All inter-

node communications are performed using the split-phase transactions (request and response

messages); processors never block when issuing a remote request, and the network interface

for message handling is well integrated into the processor pipeline. A separate co-processor

handles all the responses to remote requests.

3 PBD: Model of Computation

Our proposed model is basically a dynamic data
ow architecture with self scheduling nodes.

It is a 2-D mesh of processors with local memory connected by a network architecture

that has not been determined. This processor array executes a data
ow graph like other

DDF systems; i.e., a node is enabled when all the input data arrives on the input arcs. This

schedules �ring of the node and a token is sent on the output arc. There are many di�erences

with respect to the early data
ow systems covered in Section 2. It is a coarse-grained

system as a block of instructions is broadcast for execution to every node instead of a single

instruction. There is an asynchronous decoupled co-processor that pre-fetches the \block"

of instructions based on a separate program produced by the compiler and then broadcasts

or multicasts to the processor array. This program is based on the instruction dependence

graph of the program. The block size is not �xed and block boundaries are de�ned by

unpredictable latency operations. PBD is a message passing multiprocessor system, where

tokens are passed. The �elds of any token include:

< destination node id; instruction pointer; value; context id >

This resembles the approaches followed in TTDA and Manchester with respect to dynamic

tagging for context identity. All the processors are data-driven like a data
ow architecture

with another subtle variation called the owner computes rule, which means only those nodes

will be activated that have the data in their local memory. Our model makes all data

3

accesses local and excludes all remote data requests unless required. The operations are

totally asynchronous and the need for synchronization is minimal. Synchronization can be

performed on a need basis and the synchronization overhead is tolerated. This is not a

bottleneck as data
ow models have low synchronization overhead as explained in section

2. The memory is addressed uniformly in a global address space. It is simulated using the

processor ID as the most signi�cant byte and the local memory in the node as the least

signi�cant byte. There is a block level locality in this model unlike the �ne-grained models

which only had instruction level locality. This can be e�ectively employed for pipelining

within each node.

4 Simulation Model and Implementation

4.1 Work-Depth Model

In parallel processor-based simulation models, performance is measured in terms of the

number of instruction cycles a computation takes and is usually expressed as a function of

input size and number of processors. Work-Depth model is a virtual formal model that

de�nes performance in more abstract measures than just running time on a particular

machine. The model consists of a pair of measures, work and depth. Work is de�ned

as the total number of operations executed by a computation, and depth is de�ned as the

longest chain of sequential dependencies in the computation. In �gure 1 the work required

for summing n numbers on a balanced tree requires is 15 and the depth is 4.

Work is usually viewed as a measure of the total cost of a computation. The depth

represents the best possible running time, assuming an ideal machine with an unlimited

number of processors. A problem with using work and depth as cost measures is that they

do not directly account for communication costs, which is not a bottleneck for our model.

4.2 Machine Simulation Model

We have implemented a message driven data
ow processor array in C++. The processors

in the array communicate with each other via messages or tokens in our system. The imple-

mentation has used high-level features like STL, function objects, templates and callbacks

provided by C++ for simulation. Figure 2 shows the high-level model. We brie
y describe

the design of the basic units and their implementation in our simulation.

� Token: It has been implemented as a function object in C++. The format is as explained

4

Figure 1: Work-Depth example Figure 2: Processor Array Model

in Section 3. The instruction pointer is a function member pointer to a member function

of the class to which the object belongs. Each token represents a unit of work. Tokens are

queued up at processor and executed and represent the data in the data
ow model.

� Processor: A processor has been designed as a class with a FIFO queue of tokens.

Received tokens are placed in the FIFO queue. Each token takes a unit time to execute on

a processor. The instructions to be executed are referenced by a function pointer, which is

part of the token. Like a data
ow system, once execution is complete, the generated tokens

are sent to the next destination processor object.

� Processor Array: It has been implemented as a STL vector of processor objects. The

number of processor is �xed along with the memory allocated to each for data storage, which

in our simulation is the size of the data object e.g. tree, graph. The �xed address space

concept for each processor has been modeled by dividing the address of the processor object

with the memory allocated and applying the modulo over the number of processors. This

e�ectively simulates global address space. The randomness of the communication process has

been built in by randomly placing the tokens in the FIFO queue. The degree of parallelism

is represented as the number of tokens that have been slated for execution at the same level

(index) in the FIFO queues of the processors. The depth in the longest chain of execution

any processor, whereas the sum of the tokens executed by all the processors represents the

work done by the system.

5

Figure 3: Quicksort Model

A B

C

E

D

G

F

H

9

1

6

2

4

3

5

19

3
1

2

2

10

Figure 4: Graph used for Dijkstra's SSSP

5 Algorithm Simulation Results

We modeled quicksort [14] and Dijkstra's SSSP [14] and executed them to get analytical

results in terms of the work-depth model.

5.1 Quicksort

Quicksort is a highly recursive algorithm that suits data
ow programming model. We divided

the array uniformly over our processors and implemented parallel partitioning by simulating

pivot broadcast. Figure 3 depicts the working of the model. Also, the standard parallel

execution of the two recursive calls at each stage were simulated. The results have been

presented in Table 5.1. We have compared our results to the analytical results for work,

depth, maximum degree of parallelism (DoP) and average DoP. The analytical work for

quicksort is n � log2n and the depth is log2n. The maximum degree of parallelism is the

maximum parallel operations existing at any level in the algorithm. The average degree

is calculated as the work=depth in our simulation. The depth value for the simulation is

di�erent as the longest chain of sequential dependencies will be higher due to communication

work and non-uniform data division unlike the analytical model. The results show a higher

work load due to the extra work done for broadcast and communication but they prove our

main point by exploiting the inherent parallelism. The average and maximum degree of

6

Analytical Simulation

No of Elements Work Depth Max DoP Avg DoP Work Depth Max DoP Avg DoP

8 24 3 8 4.7 35 6 8 5.8

16 64 4 16 7.5 76 10 16 7.6

32 160 5 32 12.4 187 13 8 14.3

Table 1: Quicksort Simulation Results

parallelism are very close to the analytical model. The average degree shows a higher value

for the simulation for 16 and 32 elements as the work load increases. Thus the simulation

shows that the computation scales with the data size. At 8 elements, the overhead work

forms a bigger ratio of the total work but this ratio reduces with more data.

5.2 Dijkstra's SSSP

Theoretically the most eÆcient sequential algorithm to calculate single source shortest path

(SSSP) on digraphs with non-negative edge weights is Dijkstra's algorithm. For a directed

graph, G = (V;E) with jEj = m; jV j = n, its running time is O(nlog(n) +m). There is no

parallel O(nlog(n) + m) work PRAM (Parallel Random Access Machine) algorithm with

sublinear running time. The best O(nlog(n)+m) work solution has running time O(nlog(n).

We studied the PRAM algorithm presented in [15] and have implemented a highly modi�ed

version of it for our simulator. We used the graph shown in Figure 4 for our simulation

runs. The number of nodes, n = 8 and the number of edges, m = 13, give us sequential

work = 37 and depth = 8 as each node has to be extracted from the priority queue. We

basically parallelized the relaxation [14] calls to the adjacent nodes of the node extracted

from the priority queue at every step. Our values for the run were work = 46, depth = 8,

maxmimumDoP = 3 and averageDoP = 2:1. The low value of average DoP is due to the

small number of nodes and edges in the graph and not enough existing parallelism that can

be exploited. We need to run the algorithm on more graphs as we cannot benchmark the

results for runs on a single graph. Also, the algorithm design requires more �ne-tuning to

extract more parallelism.

7

6 Conclusions

The more recent superscalar microprocessors emulate data
ow machines. The control
ow

program is converted to a data
ow graph in the instruction window and then a reorder

bu�er retires the instructions in order. In a data
ow model like ours, the entire program is

a data
ow model to exploit as much parallelism as possible. We believe it is more e�ective

to expose the data
ow as a programming model than converting sequential instructions to

and from data
ow during execution.

We have proposed the model of computation and implemented the basic parallel data
ow

machine architecture simulation in C++. We also designed the algorithms for quicksort and

Dijkstra's SSSP and implemented them on our simulator. Quicksort is a recursive and easily

parallelizable algorithm and produced very good preliminary results. Dijkstra's SSSP is not

recursive but represents a irregular data structure and is hard to parallelize. The present

design, though not perfect, did produce reasonable results which show promise. More work

needs to be done on the design and implementation of the algorithms before detailed analysis

can be carried out. Other recursive algorithms need to be implemented and their performance

need to be studied in detail.

This model exposes the parallelism in recursive programs and provides
exibility in terms

of the data structures used. It is capable of handling irregular data structures like trees

and graphs unlike the vector processors which only performed eÆciently for vector data

structures. The broadcast mechanism enables execution of multiple instances of the same

function and multiple loop executions concurrently.

References

[1] J. B. Dennis, \Programming generality, parallelism and computer architecture," in IFIP

Congress, vol. 1, pp. 484{492, 1968.

[2] R. M. Karp and R. E. Miller, \Properties of a Model for Parallel Computations:

Determinacy, Termination, Queueing," SIAM Journal of Applied Mathematics, vol. 14,

no. 6, pp. 1390{1411, 1966.

[3] J. B. Dennis and D. P. Misunas, \A Preliminary Architecture for a Basic Data-Flow

Processor," in Proc. IEEE/ACM International Symposium on Computer Architecture,

pp. 126{132, 1975.

8

[4] J. E. Rumbaugh, \A Data Flow Multiprocessor," IEEE Computer, vol. 26, no. 2,

pp. 138{146, 1977.

[5] J. B. Dennis, \First version of a data-
ow procedure language," in Proc. of the Colloque

sur la Programmation, vol. 19, pp. 362{376, Springler-Verlag, 1975.

[6] Arvind and R. A. Ianucci, \Two Fundamental Issues in Multiprocessing," in Proc.

DFVLR Conference on Parallel Processing in Science and Engineering, pp. 61{88, 1987.

[7] Arvind, D. Culler, R. Iannucci, V. Kathail, K. Pingali, and R. E. Thomas, \The

Tagged Token Data
ow Architecture," Technical Report, MIT Laboratory for Computer

Science, 545 Technology Square, Cambridge, MA 02139, 1984.

[8] J. R. Gurd, C. C. Kirkham, and I. Watson, \The Manchester prototype data
ow

computer," Communications of the ACM, vol. 28, January 1985.

[9] G. M. Papadopoulos and D. E. Culler, \Monsoon: An explicit token store architecture,"

in Proc. IEEE/ACM International Symposium on Computer Architecture, pp. 82{91,

1990.

[10] Arvind and R. S. Nikhil, \Executing a Program on the MIT Tagged-Token Data
ow

Architecture," IEEE Computer, vol. 39, no. 3, pp. 300{314, 1990.

[11] R. Ianucci, \Toward a Data
ow/von Neumann Hybrid Architecture," in Proc.

IEEE/ACM International Symposium on Computer Architecture, pp. 131{140, 1988.

[12] R. S. Nikhil and Arvind, \Can data
ow subsume von Neumann computing?," in Proc.

IEEE/ACM International Symposium on Computer Architecture, pp. 262{272, 1989.

[13] R. Nikhil, G. M. Papadopoulos, and Arvind, *T: A multithreaded massively parallel

architecture," in Proc. IEEE/ACM International Symposium on Computer Architecture,

pp. 156{167, 1992.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to algorithms. MIT Press

and McGraw-Hill Book Company, 6th ed., 1992.

[15] A. Crauser, K. Mehlhorn, U. Meyer, and P. Sanders, \A parallelization of Dijkstra's

shortest path algorithm," in Proc. Mathematical Foundations of Computer Science,

vol. 1450, pp. 722{731, Lecture Notes in Computer Science, Springer-Verlag, 1998.

9

