

Vishal Mishra and Kursad Oney 29thApril 2002

Motivation and Outline

- Age of billion transistors on a chip
- Communication cost greatly reduced
- Programs written for sequential machines, don't exploit inherent parallelism in programs
- Propose a new dataflow architecture
- Simulate the architecture for recursive data structures e.g. quicksort, Dijkstra's shortest path
- Expose parallelism in these recursive algos.

Model of Computation

- 2-D array of processors with local memory on a single chip
- Token: [dest., context, instruction ptr, data]
- Blocks of instructions, coarse grained
- Data driven, owner computes rule
- Async operation or loosely sync
- Predictive: pre-fetching blocks of instructions
- Locality: block level
- Global address space: processor id & memory

Simulation: Modified Work-Depth

- Formal Virtual Model
- Work: Total No. of Ops
- Depth: Longest Chain of Sequential Dependencies
- Work 15, (*n-1*)
- Depth 4, (log₂n)
- Captures notion of parallelism
- Communication costs not directly accounted

Simulation Model

- Processor: FIFO queue of tokens, Fixed Address Space
- Processor Array: vector of processor objects
- Tokens: function objects
- Communication Delays modeled by random token placement

Quicksort Simulation

4

Quicksort Results

- Expected
 - Work = $n \log(n) = 24$
 - Depth = log(n) = 3
 - Degree of Parallelism = 24/3 = 8
- Actual (Preliminary)
 - Work = 22
 - Avg Degree of Parallelism = 7
 - Max DOP = 8

Conclusions

- Proposed the Model of Computation
- Simulated the parallel architecture in C++ using function objects
- Implemented "quicksort" a highly recursive algorithm and evaluated the degree of parallelism
- Presently working on Dijkstra's shortest path and more analysis