
Predictive Block Data
ow Model for Parallel

Computation

EE382C: Embedded Software Systems

Literature Survey

Vishal Mishra and Kursad Oney

Dept. of Electrical and Computer Engineering

The University of Texas at Austin

Abstract

Data
ow architecture as a concept has been around for a long time for parallel com-

putation. In data
ow machines, the hardware is optimized for �ne-grain data-driven

parallel computation. The architecture can tolerate long unpredictable communication

delays and supports generation and coordination of parallelism directly in the hardware.

We present a coarse-grained data
ow model of computation for parallel architectures

named Predictive Block Data
ow (PBD) due to its predictive capacity and processing

of instructions in blocks instead of the �ne grain model of one machine instruction. Its

based on the dynamic data
ow model but di�ers in some ways that will be explained

in section 4.

1 Introduction

Data
ow is an intuitively appealing, simple yet powerful model of parallel computation.

In data
ow programming and architectures there is no notion of a single point or locus of

control. There is no concept of program counter corresponding to the conventional sequential

computational models. The data
ow model describes computations in terms of locally

controlled events, each event corresponds to the "�ring" of an actor. An actor can be a

single instruction or a sequence of instructions. An actor �res when all the inputs it requires

are available. In a data
ow execution, many actors maybe ready to �re simultaneously and

thus represent many asynchronous concurrent computation events.

1



Dennis [1] developed the model of data
ow schemas, building on work by Karp and Miller

[2]. These data
ow graphs, as they were later called, evolved from a method for designing

and verifying operating systems to a base language for a new architecture. The �rst designs

for such machines were made at MIT in the early 1970s by Dennis and Misunas [3] and

Rambaugh[4]. These designs use data
ow graphs [5] to represent and exploit the parallelism

in programs. We would discuss the basics of data
ow graphs and a few of the original

machines in Section 2.

The failure of the original data
ow machines led to a new wave of hybrid multithreaded

machines. It is argued that von Neumann and data
ow machines are not, in fact, orthogonal

but rather sit on opposite ends of a spectrum of architectures. These hybrid architectures

combine features of von Neumann and Data
ow. In section 3 we introduce the basic concepts,

characteristics and evolution of multithreaded computer architectures with data
ow origin

and brie
y review a few of them.

Algorithms in signal processing tend to be modeled as compositions of components that

conceptually run concurrently and communicate via signals. Typically, the signals are

continuous functions of time continuum. However, modern signal processing applications

involve more discrete-time signals than continuous-time signals. Instead of time continuum,

a discrete clock is used to regulate the communication and the phase of the computation.

The synchronous models globally order the tokens according to a global clock. In data
ow

models, by contrast, signals are streams of tokens, where the relative order of the tokens

within a stream usually matters, but the ordering of the tokens across streams is irrelevant.

Data
ow presents a di�erent abstraction to ordering by eliminating the global ordering of

synchronous models and leaves it to a designated scheduler. Thus, the concurrency is even

higher than the circuit-theory roots of the signals processing, since the tight coordination

implied by a global ordering based on time is no longer required. It is arguable that this

reduces stream-based processing to its computational essence.

We believe that the recent advances in chip fabrication have once again made the data
ow

concept important for massively parallel architectures (MPA). We propose a model compris-

ing of a 2-D multiprocessor array con�guration on a single chip. In section 4 we describe our

model of computation, which is a dynamic data
ow model with a few variations. Finally in

section 5 we present a few comments and our project proposal.

2



2 Data
ow Architecture

Data
ow research made great strides since the seminal paper on data
ow graphs by Dennis

[5]. In a Dennis data
ow graph, operations are speci�ed by actors (or nodes) that are enabled

only when all the actors that produce required data have completed their execution. The

dependence relationships between pair of actors are de�ned by the arcs of a graph, which

represent results forwarding by an actor to successor actors, and by the �ring rules, which

specify exactly what data is required for an actor to �re. Decision and control actors may

be included to represent conditional expressions and iterations. They alter the routing of

tokens to a�ect data-driven control. Data structures may be constructed and accessed by

appropriate data
ow actors.

Two forms of data
ow architecture have become known:

� Static: The arc connecting one instruction to another can contain only a single result

value (a token) from the source instruction. There can be only one instance of a

data
ow actor in execution at any time. Thus concurrent reactivation of nodes (or

actors) is not permitted and hence static systems are restricted to implementing loops

and cannot accommodate recursion.

� Dynamic: Code-copying or dynamic tagging are used to permit recursive reactivation.

In dynamic tagging, tags are conceptually or actually associated with tokens so that

tokens associated with di�erent activations of an actor may be distinguished. This

enables arcs to simultaneously carry multiple tokens, thereby exposing more data

parallelism.

Due to the inherently parallel nature of data
ow execution, data
ow computers provide

an elegant solution to the two fundamental problems of von Neumann computers, namely

memory latency and synchronization overhead, as described by Arvind and Iannucci in [6].

Latency is tolerated by dynamic switching between ready computation threads, whereas

synchronization is supported in hardware leading to low overhead.

We now brie
y discuss some basics behind three well researched early data
ow machines.

✵ Tagged Token Data
ow Architecture (TTDA): [7] gives the details of the MIT TTDA

dynamic data
ow architecture. It has a number of processing elements (PEs) or

data
ow processors and storage units interconnected by an n-cube packet network. The

storage units are addressed uniformly in a global address space. Each storage unit is an

I-structure unit, which basically resides in global memory and introduces the notion

of state into data
ow graphs. The main characteristic is that each datum or token

3



Figure 1: Block Structure of a Single PE in MIT's TTDA

is tagged with context identi�er (format < context; destination instruction; datum >)

that speci�es the activation to which the token belongs. These tokens are matched at

the destination node by wait-match units, which act as rendezvous points for pairs of

arguments for dyadic operators.

✵ Manchester Prototype Data
ow Computer: It is a dynamic data
ow machine [8] very

similar to TTDA. It also employs dynamic tagging like TTDA for identifying iteration

level and to implement recursion by matching tokens by an associative lookup.

✵ Monsoon Data
ow Architecture: In 1987-88, the associative waiting-matching store

of the above machines was replaced by an explicitly managed directly addressed token

store, by Papadopoulous and Culler in the Monsoon machine [9]. They proposed an

Explicit Token Store (ETS) model with the central idea that storage for tokens is dy-

namically allocated in sizable blocks. When a function is invoked, an activation frame

is allocated explicitly to provide storage for all tokens generated by the invocation.

A token now comprises of a value, a pointer to the instruction to execute (IP) and a

pointer to an activation frame(FP).

The paper by Veen [10] gives a good background and comparison of some early data
ow

research.

4



3 Multithreaded Hybrid Architectures

The data
ow model and von Neumann control-
ow model are generally viewed as two

extremes of execution models on which a spectrum of architecture models can be based.

But it has been argued that the two models are in fact not orthogonal. Starting with the

operational model of a pure data
ow graph, one can easily extend the model to support von

Neumann style program execution. A region of actors within a data
ow graph can be grouped

together as a thread to be executed sequentially under its own private program counter

control, while the activation and synchronization of threads are data-driven. It has been

speculated that there are machines along this spectrum which trade instruction scheduling

simplicity for better low level synchronization and that there exists some optimum point

between the two extremes i.e. a new hybrid model which synergistically combines features

of both von Neumann and Data
ow, as well as exposes parallelism at a desired level. Such

hybrid multithreaded architecture models have been proposed by a number of research groups

with their origins in either static data
ow or dynamic data
ow. [11] is a good source for a

discussion on the principal projects and representative work before 1995 in multithreaded

computer architecture. Below we brie
y discuss the basics of a few research projects.

✵ McGill Data
ow Architecture: It is inspired by the static data
ow model. The McGill

Data
ow Architecture Model [12] has been proposed based on the argument-fetching

principle [13]. The architecture departs from a direct implementation of data
ow

graphs by having instructions fetch data from memory or registers instead of having

instructions deposit operands (tokens) in operand receivers of successor instructions.

The completion of an instruction will post an event (called a signal) to inform in-

structions that depend on the results of the instruction. This implements a modi�ed

model of data
ow computation called data
ow signal graphs. The architecture includes

features to support eÆcient loop execution through data
ow software pipelining, and

the support of threaded function activations.

✵ Iannucci's Model: Based on his research on the MIT Dynamic TTDA and the

experience gained by [14], Iannucci combined data
ow ideas with sequential thread

execution to de�ne a hybrid computation model described in his Ph.D. thesis [15].

The ideas later evolved into a multithreaded architecture project at IBM Yorktown

Research Center as described in [11]. The architecture includes features such as a

cache memory with synchronization controls, prioritized processor ready queues and

features for eÆcient process migration to facilitate load balancing.

5



✵ P-RISC: This hybrid model [16] is interesting in the sense that it explores the pos-

sibility of constructing a multithreaded architecture around a RISC processor. Nikhil

and Arvind's P-RISC model split the complex data
ow instructions into separate

synchronization, arithmetic and fork/control instructions, eliminating the necessity

of presence bits on the token store (or frame memory) as proposed in the Monsoon

machine [9]. P-RISC also permitted the compiler to assemble instructions into longer

threads, replacing some of the data
ow synchronization with conventional program

counter based synchronization .

✵ *T (StarT): This project [17] is a successor of the Monsoon project at MIT. It

de�ned a multiprocessor architecture using an extension of an o�-the-shelf processor

architecture to support �ne-grain communication and scheduling of user microthreads.

The architecture is intended to retain the latency-hiding feature of the Monsoon split-

phase global memory operations while being compatible with conventional MPA's

based on von Neumann model. Inter-node traÆc consists of a tag (called continuation,

a pair comprising a context and instruction pointer). All inter-node communications

are performed using the split-phase transactions (request and response messages);

processors never block when issuing a remote request, and the network interface for

message handling is well integrated into the processor pipeline. A seperate co-processor

handles all the responses to remote requests.

4 PDB: Model of Computation

Our proposed model is basically a dynamic data
ow architecture with a few enhancements

and variations. It is a 2-D mesh of processors with local memory connected by a network

architecture that has not been decided as yet. This processor array executes a data
ow

graph like other DDF systems i.e. a node is enabled when all the input data arrives on the

input arcs. This schedules �ring of the node and a token is sent on the output arc. There

are many di�erences with respect to the early data
ow systems covered in section 2. It is

not a �ne-grain system but much more coarse-grained as a block of instructions is broadcast

for execution to every node instead of a single instruction. There is a decoupled co-processor

that pre-fetches the "block" of instructions based on a separate program produced by the

compiler and then broadcasts or multicasts to the processor array. This program is based on

the instruction dependence graph of the program. The size of a block has not been �xed but

a block can end at either a function call or start/end of a loop. It is a trivial issue for which

solutions are available. PBD is a message passing multiprocessor system, where tokens are

6



passed. The �elds of any token include:

< destination node id; instruction pointer; value; context id >

This resembles the approaches followed in TTDA and Manchester with respect to dynamic

tagging for context identity. All the processors are data-driven like a data
ow architecture

with another subtle variation called the owner computes rule, which means only those nodes

will be activated that have the data in their local memory. Our plan involves making all

data accesses local and to exclude all remote data requests unless required. The operations

are totally asynchronous and the need for synchronization is minimal. Synchronization can

be performed on a need basis and the synchronization overhead will be tolerated. It is not

expected to be an issue as data
ow models have low synchronization overhead as explained

in section 2. The memory is addressed uniformly in a global address space. It is simulated

using the processor ID as the MSB and the local memory in the node as LSB. There is a

block level locality in this model unlike the �ne-grained models which only had instruction

level locality. This can be e�ectively employed for pipelining within each node. Portions of

the graph are active at one time so some kind of spatial locality.

The main advantage that we are expecting to show is a huge speed up due to massively

parallel operations. The broadcast mechanism enables execution of multiple instances of the

same function and multiple loop executions concurrently. This model provides 
exibility in

terms of the data structure used. It is capable of handling all irregular data structures like

trees and graphs unlike the vector processors which only performed e�ectively for vector

data structures.

The work done till now has only been on at a higher level and we still have some issues

remaining like 
ow control, termination detection, replacement policy for the blocks and

exception handling. In this project we would be concentrating more on the potential speed-

ups that can be achieved for various algorithms.

5 Comments & Proposed Work

The more recent Superscalar microprocessors emulate data
ow machines. The control 
ow

program is converted to a data
ow graph in the instruction window, which is nothing but

a data
ow graph. And then a reorder bu�er retires the instructions in order. In a data
ow

model like ours, the whole program is a data
ow model to exploit as much parallelism as

possible. We believe it is more e�ective to expose the data
ow as a programming model

than converting sequential instructions to and from data
ow during execution.

7



We plan to devise algorithms to implement quicksort and graph coloring on our model

and analyze their performance in terms of time complexity.

References

[1] J. B. Dennis. Programming generality, parallelism and computer architecture. In IFIP

Congress, volume 1, pages 484{492, 1968.

[2] Richard M. Karp and Raymond E. Miller. Properties of a Model for Parallel

Computations: Determinacy, Termination, Queueing. SIAM Journal of Applied

Mathematics, 14(6):1390{1411, 1966.

[3] J. B. Dennis and D. P. Misunas. A Preliminary Architecture for a Basic Data-Flow

Processor. In Proc. Second Annual Symp. Computer Architecture, pages 126{132,

Houston, Texas, January 1975.

[4] J. E. Rumbaugh. A Data Flow Multiprocessor. IEEE Computer, 26(2):138{146, 1977.

[5] J. B. Dennis. First version of a data-
ow procedure language. In Proceedings of the

Colloque sur la Programmation, volume 19, pages 362{376. Springler-Verlag, 1975.

[6] Arvind and R. A. Ianucci. Two Fundamental Issues in Multiprocessing. In Proceedings

of DFVLR Conference on Parallel Processing in Science and Engineering, pages 61{88,

1987.

[7] Arvind, D.E. Culler, R.A. Iannucci, V. Kathail, K. Pingali, and R. E. Thomas. The

Tagged Token Data
ow Architecture. Technical Report, MIT Laboratory for Computer

Science, 545 Technology Square, Cambridge, MA 02139, 1984.

[8] J.R. Gurd, et al. The Manchester prototype data
ow computer. Communications of

the ACM, 28(1), January 1985.

[9] Gregory M. Papadopoulos and David E. Culler. Monsoon: An Explicit Token-Store

Architecture. In 25 Years ISCA: Retrospectives and Reprints, pages 398{407, 1998.

[10] Arthur H. Veen. Data
ow Machine Architecture. ACM Computing Surveys (CSUR),

18(4):365{396, 1986.

[11] R.A. Iannucci, editor. Multithreaded Computer Architecture - A summary of the state

of the art. Kluwer Academic Press, 1994.

8



[12] G.R. Gao. An eÆcient hybrid data
ow architecture model. Parallel and Distributed

Computing, 19(4):293{307, 1993.

[13] J. B. Dennis and G. R. Gao. An eÆcient pipelined data
ow processor architecture. In

Proceedings of Supercomputing '88, pages 368{373, 1988.

[14] Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token Data
ow

Architecture. IEEE Computer, 39(3):300{314, 1990.

[15] R.A. Ianucci. Toward a Data
ow/von Neumann Hybrid Architecture. In Proceedings

of the 15th Annual International Symposium on Computer Architecture, pages 131{140,

1988.

[16] R. S. Nikhil and Arvind. Can data
ow subsume von Neumann computing? In

Proceedings of the 16th Annual International Symposium on Computer Architecture,

pages 262{272, 1989.

[17] R. Nikhil and G. Papadopoulos. *T: A Multithreaded Massively Parallel Architecture.

In Proceedings of 19th International Symposium on Computer Architecture, pages 156{

167, 1988.

9


