# Implementation of an Unequal Error Protection Scheme for Scalable Foveated Image Communication

Embedded Software Systems Course Project May 1, 2002

> Muhammad Farooq Sabir Rashmi Tripathi

## **Problem Statement**

 To provide Unequal Error Protection (UEP) against the channel noise, for real-time scalable image communication.

### \* Embedded Foveation Image Coding (EFIC)

 Bits with greater contribution to the foveated visual distortion are encoded and transmitted first.

### Scalable Image Communication

 Bitstream can be truncated at any point to provide different compression ratios.

### \* Tradeoff

 Decrease protection as the importance of bits decreases, in order to obtain high raw data transmission rate.



Fig. 1: Block diagram for unequal error protection using turbo codes

 Use rate compatible punctured turbo codes to provide different level of error protection to different portions of the bitstream.

# Implementation

Each block in the system is modeled as an SDF actor.

#### \* Punctured Turbo Encoder:

- ✤ Rate 1/3 encoder with 16 states.
- 8 different levels of puncturing for different portions of the bitstream.
- Fixed point implementation.

### \* Turbo Decoder:

- Uses Soft Output Viterbi Algorithm (SOVA).
  - \* 3 times lower complexity as compared to Maximum A posteriori Probability (MAP) algorithm.
- Allows low complexity decoding.
- Floating point implementation.

## **Implementation contd.**

Comparing MAP and SOVA performance



- \* Modules have been written in C.
- System is being implemented on TMS320C6701 floating-point DSP.

## **Results**

- Encoder has been optimized.
- Decoder has been optimized with respect to memory.
- **\* Optimization Statistics:**

#### Encoder

#### Decoder

| Optimization Stage                            | No. of Instruction<br>Cycles (in Millions) |
|-----------------------------------------------|--------------------------------------------|
| Without any optimization                      | 11.18                                      |
| After Level 3<br>optimization                 | 5.23                                       |
| After memory<br>optimization (code &<br>data) | 1.81                                       |
| After loop unrolling                          | 1.09                                       |
| After coding in assembly                      | 0.48                                       |

| Optimization Stage                  | No. of Instruction<br>Cycles (in Millions) |
|-------------------------------------|--------------------------------------------|
| Without any optimization            | 170                                        |
| After Level 3 optimization          | 119                                        |
| After memory<br>optimization (data) | 62                                         |
| After memory optimization (code)    | 21                                         |
| After loop unrolling                | 18                                         |

### **Results contd.**

 Comparison between Uniform (rate 2/3) and Unequal (overall rate 3/4) Error Protection.



BER vs. SNR for EFIC at compression ratio of 8:1



26

# Conclusions

- An unequal error protection scheme for EFIC compressed images using Punctured Turbo Codes
  - Written in C and implemented on TMS320C6701 DSP processor.
  - Optimized with respect to memory and computation time.
- \* Presently working on
  - Optimization of 'Puncture' and 'Insert Zeros' blocks.
  - Assembly level optimization of the decoder.
- \* Future Work
  - Fixed point implementation of the decoder.
  - Implementation of unequal error protection employing spatial diversity, as a real-time embedded system.