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Abstract 

The H.26L standard is targeted for low bit rate and low delay video applications such as 

video conferencing applications; however, many other applications are considered to be within 

the scope of the design effort and tests indicate that H.26L is fully suitable for a very broad range 

of applications. Since H.26L has a wide range of applications, any hardware implementation is 

likely to be application specific. Therefore, software-based implementation that follows 

flexibility and portability seems to be a natural and viable option.  

 The Synchronous Data Flow (SDF) model of computation (data driven and statically 

schedulable) is the most suitable model for the video processing applications since the number of 

tokens produced and consumed by any computation block (actor) at its input/output port remains 

constant throughout the execution.  In this report, we will present our SDF model of the H.26L 

encoder and the results of our simulation under multi-processor environment.  Our model yields 

a better performance in terms of speed of execution in comparison with the original sequential 

implementation since the benefits from concurrent execution outweigh the overheads created by 

interprocessor communication. 
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1.Introduction 

UB Video Inc., a leading provider of software solutions for video communications, 

announced on March 11, 2002 the availability of UBLive-26L-C64, the world’s first H.26L 

based video processing solution on Texas Instruments TMS320C64X digital media platform, for 

real-time video applications, allowing users of such applications to enjoy excellent video quality 

on the existing low bandwidth network infrastructure [11]. 

     The H.26L standard is being developed through the International Telecommunications 

Union – Telecommunications Standardization Sector (ITU-T) Video Coding Experts Group 

(VCEG) and the ISO/IE MPEG standardization committee.  H.26L offers substantially improved 

coding efficiency, offering the same quality as MPEG-4 or H.263 for as little as 50% of the 

bandwidth required by the latter two standards [2]. The main objective behind the H.26L project 

is to develop a high-performance video coding standard by adopting a “back to basics” approach 

where simple and straightforward design using well-known building blocks is used. 

The incorporation of multimedia technology in many of the general purpose computers have 

greatly helped in making real time video encoding in software a reality [3]. The software-based 

implementation as against hardware implementation allows for greater flexibility and scalability. 

A software-based implementation of a simple profile MPEG-4 encoder by He et al [9] is an 

example.  

In this paper, we will first present the background of H.26L video processing standard, 

followed by a short description of H.26L encoder, which is our main focus in this project. Then 

we will model the H.26L encoder in SDF model and simulate the model in Ptolemy 

environment. We will finally test the model in the multiprocessor environment for its 

effectiveness and present our conclusions. 
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2. Overview of H.26L Video Encoder 

A fundamental concept in  H.26L  is the separation of the design into two distinct layers: a 

video coding layer that is responsible for efficiently representing video content, and a network 

adaptation layer that is responsible for packaging the coded data in an appropriate manner based 

on the network on which it is used [4,8]. In this paper, we focus on the video coding layer.  

Pictures are divided into macroblocks of 16*16 pixels. The H.26L standard requires every 

input macroblock needs to be predicted. The intra predictions, which reduce spatial redundancy, 

are derived from the neighboring pixels in left and top macroblocks [7]. Inter prediction (motion 

estimation and compensation), which reduce temporal redundancy, can be done from more than 

one previous frame. The standard also allows for seven different block sizes from which an 

optimum block size with minimum cost is found and used for prediction. The minimum cost is 

calculated based on the distance measure between two candidate macroblocks and overhead bits 

for coding block size information and motion vectors. The prediction capability of the motion 

compensation algorithm in H.26L is further improved by allowing motion vectors to be 

determined with higher levels of spatial accuracy of the order of  quarter-pixel and eighth-pixel  

which are not found  in previous standards.  

The coding scheme of H.26L also includes the Discrete Cosine Transform (DCT)-based 

residual coding [1], scalar quantization with an adjustable step size for bit rate control and zigzag 

scanning.  

Two different entropy-coding techniques, Context-Based Binary Adaptive Arithmetic 

Coding (CABAC) and Universal Variable Length Coding (UVLC) are employed in H.26L to 

further compress the quantized coefficients.  
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3. System Level Modeling of the H.26L Encoder 

 3.1 Synchronous  Dataflow Graph  

Formal system-level modeling provides portability and scalability over heterogeneous 

software environments and guarantees determinacy and correctness [9].  Synchronous Dataflow 

(SDF) model is a data driven model in which the flow of data through the graph does not depend 

on the values of data. Each block in the model consumes and produces the same fixed number of 

tokens on each input/output port on every firing. Static scheduling is possible and boundedness 

can be determined in finite time. As compilation can be done statically, generation of efficient 

code is possible.  All these factors make SDF a suitable model of computation for modeling 

signal processing applications. 

3.2   Modeling of the H.26L Video Encoder 

 Kim and Evans [10] described a generic dataflow of video codec system modeled using 

homogeneous SDF (HSDF), in which each functional block of an encoder is implemented as a 

star in the Ptolemy environment. Hai [11] described a SDF model of the H.263 Encoder and 

simulation results indicate that the model provides efficiency in terms of code size and the 

memory size. The successful results from the above approach and core strengths of SDF as stated 

above motivates us to model the H.26L encoder using the SDF model of computation. 
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Fig. 1 SDF Model of H.26L Encoder 
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Zheng, et al [13] have exploited the GroupOfBlocks (GOB) level parallelism in the H.263 

Encoder on multiprocessor workstations and the results indicate a linear speedup with a number 

of processors. This motivates us to exploit the inherent slice level parallelism in the H.26L 

Encoder since each image is made up of slices and each slice represents an independent coding 

unit. 

Fig.1 represents the SDF modeling of the H.26L Encoder. The arcs in the SDF model 

represent the flow of data tokens from one block to another. Each image is of size (176*144) and 

is divided into slices. Each slice consists of number of macroblocks (9 in our case) of size (16*16 

block of pixels). The tokens are both frame based (176*144 ) as well as slice based (9*(16*16)).  

Once the image is read from the device, the distributor segments the image into different slices 

and outputs to the slice encoding block. The slice encoding block processes the encoding of the 

macro block in a loop and the result is then entropy coded using either of the entropy coding 

methods – UVLC or CABAC. Fig 2 represents the homogenous SDF model of the macro block 

encoding. Here each token is block based of size (16*16). Each macro block is processed by the 

Intra/Inter block (IP), which decides whether the macro block has to be Intra predicted or Inter 

predicted.  
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Intra prediction block (IP) does the prediction of the pixels in the spatial domain. Inter 

prediction block (IP) computes the motion vectors based on the previous reference frames. 

The subtract block subtracts the predicted input from the original input. The transform/ 

quantization (DCTQ) block computes the transform based on integer spatial transform that is an 

approximation of Discrete Cosine Transform (DCT) and also  quantizes of the coefficients based 

on the quantization parameter. The inverse transform/quantization (IDCTQ) does the inverse of 

the transform and quantization and is fed as a feedback loop to the inter prediction block.  There 

is also an initial delay token to avoid deadlock. 

4. Software Implementation 

Ptolemy Classic and PeaCE (Ptolemy extension as Codesign Environment) are the two 

environments to simulate the SDF model. Ptolemy Classic is an environment for simulation and 

prototyping of heterogeneous systems. It uses modern object-oriented software technology (C++) 

to model each subsystem in a natural and efficient manner and to integrate these subsystems into 

a whole. It supports various models of computations including SDF. SDF is one of the mature 

domains in Ptolemy having a large library of stars and demonstrations.  A model in SDF domain 

can be easily migrated to other domains in Ptolemy. PeaCE is a codesign environment that is 

built on top of Ptolemy Classic. It provides the following extra features in addition to features 

provided by Ptolemy in the SDF domain [11]: 

1. Computation modules are specified with an extended SDF model that supports controlled 

global state. 

2. Fractional Rate Dataflow (FRDF) Model is introduced where several optimization can be 

performed to minimize the memory size.  
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 We chose Ptolemy classic [6] as against its extension PeaCE for simulation because our 

model did not require sharing of global space among different blocks and our scope was limited 

to minimize the timing required for encoding.  However our model can be easily converted into a 

FRDF model and simulated in the PeaCE environment to optimize for buffer size management.  

 Our main accomplishment is the implementation of the H.26L encoder, exploiting the 

slice level parallelism in the algorithm using the models in Fig. 1 and Fig. 2.  Software 

implementation involved the following steps:  

• Segmentation into SDF blocks. The original sequential code in C is partitioned into self 

contained blocks.  Each block is encapsulated into a C++ class and coded into the .pl files 

of Ptolemy. 

• Migration from SDF to CGC (Code Generation in C). CGC is a Code Generation domain 

in Ptolemy and it  generates C code rather than run simulations. The conversion from 

SDF into the CGC domain required adding of methods like addCode(), codeBlock(), 

addInclude() [6] and some inclusion of macros. The go() method is modified to invoke 

the addCode() method.  

• Single and Mutli Processor Target.  Target architecture is one of the key features of code 

generation domains. Every application has a user-specified target architecture, selected 

from a set of targets supported by the user-selected domain which supports scheduling, 

compiling, assembling, and downloading code.  CGC domain supports single processor 

target (default-CG) and also multi processor targets (unix_multi_C and NOWam 

(Networks Of Workstations Active Messages)).  The generated code in the CGC domain 

is run under single processor target and also under multi processor targets. The first step 

in multiprocessor scheduling, or parallel scheduling, is to translate SDF graph to an 
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acyclic precedence expanded graph (APEG). The APEG describes the dependency 

between invocations of blocks in the SDF graph during execution of one iteration. Hence, 

a block ( slice encoding block in our case) in a multirate SDF graph may correspond to 

several APEG nodes.[6]. Parallel processing is accomplished by the scheduler which 

maps the slice encoding block in Fig.1 onto several APEG nodes and then schedules  the 

APEG nodes onto processors. 

• Generation of Gantt Chart. Gantt Chart gives the display of the schedule of the tasks 

executed in different periods of time.  This is automatically displayed under multi 

processor target. 

5. Simulation Results 

We tested our simulation of the SDF model in Ptolemy Classic running under Sun Solaris 

2.5 on a single processor.  We recorded the time required for running and analyzed the 

performance difference between our implementation and the original sequential implementation 

of the encoder. We then tested the simulation in multiprocessor CGC domain for different 

number of  processors. Fig. 3.a shows the timing results of the tests performed. The CGC domain  
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produces optimized C code which has better performance than the SDF domain in Ptolemy 

which is built on C++ code. Hence time required to run the simulation in CGC is less than the 

time required in SDF. The graph plotted with the time versus number of processors shows linear 

decrease in time with increase in number of processors. We think this is because the 

computations are distributed on a number of processors by keeping the inter processor 

communication minimum. However, interdependencies between macro blocks in a slice make it 

less beneficial to increase the number of processors more than the number of slices in a image. 

Here the optimum number is  9  as image consists of 9 slices. 

6. Limitations 

The scope of parallelism exploited in our implementation is limited to I-Frames (Intra 

frame). Slice Level Parallelism is ineffective for the encoding of P (backward predicted frame) 

and B (bi-directional predicted frame) frames because H.26L encoder allows for multiple 

reference frames and this might account for huge interprocessor communication overhead. 

7. Conclusions and Future Work 

  Our model guarantees speedup in the execution time to that of the existing codec, when run 

in multiprocessor CGC domain. The speedup depends on the total number of slices in the input 

image and maximum speedup is achieved when the number of processors used is equal to the 

number of slices. Inter processor communication is kept low. 

In addition to testing the model under other CG domains, the future work could include 

• Exploiting of  block-level parallelism in the computations of transforms, motion vectors 

and entropy coding, specifically Universal Variable Length Coding (UVLC). 

• Migration of SDF model to Fractional Rate Data Flow(FRDF) model and simulation 

under PeaCE environment to optimize for buffer size management. 
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