

Modeling and Simulation of H.26L Encoder

Literature Survey

For

EE382C Embedded Software Systems

Prof. B.L. Evans

By

Mrudula Yadav and Gayathri Venkat

March 25, 2002

 2

Abstract

The H.26L standard is targeted for low bit rate and low delay applications like video

conferencing applications; however many other applications are considered to be within the

scope of the design effort and tests indicate that H.26L is fully suitable for a very broad range of

applications. The H.26L standard currently in its design stage provides improved coding

efficiency and number of new features relative to prior standards. The design of H.26L is

strongly intended to lead to a simple and clean solution avoiding any excessive quantity of

optional features or profile configurations.

 In this survey, we will review H.26L standard, existing system level modeling and

software based implementation approaches for real-time video codecs. The inherent parallelism

and switching block structure of the H.26L encoder motivate us to model the encoder using

Boolean Dataflow model of computation and implement a software based encoder in Ptolemy

Classic, a framework for simulating heterogeneous systems.

 3

1. Introduction:

The International Telecommunications Union – Telecommunications Standardization

Sector (ITU-T) Video Coding Experts Group (VCEG), officially chartered as ITU-T Q.6/SG16,

is now undertaking the design of the next generation of video coding standard in a project known

as “H.26L”. The primary focus of the H.26L work has been to achieve a significant improvement

in compression efficiency, relative to prior standards. Other focus is to have a simple syntax

specification which will lead to a simple and clean solution avoiding any excessive quantity of

optional features or profile configurations.

 Due to its flexibility and clean slate design, H.26L is considered to be more complex

than its predecessor standards (H.261, H.263). Until recently, video encoding and decoding were

only possible using Application Specific Integrated Circuits (ASICs) or using multiple DSP

platforms. Although ASICs offer best speed performance, they are limited by their hardware

structure. Due to the limitations of the ASIC solutions, many of the general-purpose computers

have multimedia extensions. These enhancements greatly help in making real time video

encoding in software, a reality [3]. The software-based implementation also allows flexibility

and scalability. However, software based implementation requires extensive computation to

support encoding and decoding operations. The latest developments in parallel and distributed

multi-processor systems, however promise possible real-time performance for computation

extensive signal processing applications at affordable cost. A software based MPEG4 encoder by

He et al [5] is a successful example.

In the following sections, we first present a brief study of H.26L video processing

standards. Then, we review and analyze the existing modeling and implementation methods for

real-time signal processing applications. Finally, we propose our project plan

 4

2. H.26L Standards:

2.1 Overview

 The main goals of the new ITU -T H.26L standardization effort are, to enhance

compression performance and to provide a “network-friendly” packet-based video representation

addressing “conversational” (i.e., video telephony) and “non conversational” (i.e., storage,

broadcast, or streaming) applications [2].

The underlying coding scheme defined by H.26L is superficially similar to schemes that

are successfully employed in prior video coding standards, such as H.263 and MPEG-2. The

coding scheme of H.26L includes the use of translational block-based motion compensation [1],

DCT-based residual coding, scalar quantization with an adjustable step size for bit rate control,

zigzag scanning, and run-length VLC coding of quantized transform coefficients. However, the

clean-slate approach and specific optimizations led to some key features that differentiate H.26L

from all other standards.

One fundamental concept of H.26L is the separation of the design into two distinct

layers: a video coding layer that is responsible for efficiently representing video content, and a

network adaptation layer that is responsible for packaging the coded data in an appropriate

manner based on the network on which it is used. In this paper we focus on the video coding

layer.

 Motion compensation in H.26L is more flexible and efficient than in other standards [1].

Support for the use of multiple previous reference pictures for prediction is included in the core

of the standard (this was previously available only in the newest high-capability version of

H.263, approved in 2001). A much larger number of different motion compensation block sizes

are available for motion compensation (H.263 supported two such block sizes, while H.26L

 5

supports seven). The motion vectors can be specified with higher spatial accuracy than found in

earlier standards, with quarter-pixel accuracy as the lower-complexity method and eighth-pixel

accuracy sometimes available as a higher-performance method. The use of a deblocking filter

within the motion compensation loop is specified in order to reduce visual artifacts and improve

prediction (in-loop deblocking only appeared before in a high-capability optional mode of

H.263).

H.26L is also unique in that it employs a purely integer spatial transform [1] (an

approximation of the DCT) which is primarily 4x4 in shape, as opposed to the usual floating-

point 8x8 DCT specified with rounding-error tolerances as used in earlier standards. The small

shape helps reduce blocking and ringing artifacts, while the precise integer specification

eliminates any mismatch issues between the encoder and decoder in the inverse transform.

The H.26L VCL test model has achieved a significant improvement in rate –distortion

efficiency, providing nearly a factor of two in bit rate savings when comparing against the

H.263+ test model [2].

 2.2 H.26 L Codec:

nput

Video

Output
 Bit stream

 Fig 1. H.26 L video codec (Encoder and Decoder) structure

Slice
Segmentation

Composition

Slice0
Encoder

Slice1
Encoder

Slice2
Encoder

Slice0
Decoder

Slice1
Decoder

Slice2
Decoder

M
U
X

D
E
M
U
X

 6

The input video sequence consists of sequence of pictures. Pictures are divided into

macro blocks of 16x16 pixels. A number of consecutive macro blocks in coding order can be

organized in slices. Slices represent independent coding units in a way that they can be decoded

without referencing other slices of the same frame. Efficient parallel processing of the encoder

can be achieved through an effective scheduling algorithm [5].

2.3 H.26L Encoder

 -

 S 0S0 So

 MVs

 Fig 2. H.26L Encoder

Fig 2 [8] represents the diagram of the H.26L encoder. Every input macro block needs to

be predicted in H.26L. The So in Fig 2 is used to select the correct prediction method for inter

and intra macro block. The intra predictions are derived from the neighboring pixels in left and

top blocks. The unit size of spatial prediction is either 4x4 or 16x16. As H.26L allows more than

one previous frames for prediction in inter frame, Inter prediction is calculated from one of these

previous frames. Seven block sizes, i.e., 16x16, 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4, are

supported in H.26L. The spiral search finds the minimum cost for each block size in the given

range [8]. The cost includes signal SAD (Sum of Absolute Difference) and overhead bits for

Intra

Prediction

Video

MC

M
E

Frame
Buffer

Loop
Filter

DCTQ Entropy
Coding

Q’IDCT

+

+

 7

coding block size information and motion vectors. The optimal block size is decided based on

these minimum costs.

The residue after prediction is transformed with 4x4 integer DCT. Two different entropy-

coding techniques Context-Based Adaptive Binary Arithmetic Coding (CABAC) and Universal

Variable Length Coding (UVLC) are used in H.26L to compress quantized coefficients. UVLC

provides a simple and robust method to code all mode information and DCT coefficients. But the

performance at moderate or high bit rates is not good. Therefore, CABAC is proposed as another

option in H.26L. CABAC has three distinct advantages [8]: (1) context model provides

estimation of conditional probabilities of the coding symbols; (2) arithmetic code permits non-

integer number of bits to be assigned to each symbol; (3) adaptive arithmetic code permits the

entropy coder to adapt itself to non–stationary symbol statistics. For each intra macro block, the

difference between the original image and low quality prediction is encoded.

3. System-level Modeling of H.26L Encoder

3.1 Models of Computations

Formal System-level modeling provides portability and scalability over heterogeneous

software environments and guarantees determinacy and correctness [9]. There exist a number of

system-level computation models.

 In the Synchronous Dataflow (SDF) formal model, each actor consumes and produces

the same fixed number of tokens on each firing. The flow of data through the graph does not

depend on the values of data. For the SDF model, static scheduling is possible and determination

and boundedness can be determined in finite time. Boolean Dataflow (BDF) generalizes SDF by

adding if-then-else and for-loops constructs to support data-dependent control flow. Dynamic

Dataflow (DDF) generalizes BDF by adding run-time recursion. Although static schedules can

 8

be constructed for some BDF and DDF graphs, these graphs are usually scheduled dynamically.

Kahn Process Network (PN) is a concurrent model of computation that is a superset of data flow

models.

3.2 Modeling of H.26L Encoder:

Kim and Evans [10] described a generic dataflow of video codec system modeled using

homogeneous SDF (HSDF), in which each functional block in Fig. 2 is implemented as a star in

Ptolemy environment. However, no simulation results are reported.

 The switching features [8] like deciding between the prediction modes of the standard,

deciding between the best block sizes, best reference frame etc motivates us to model the

encoder using BDF rather than using SDF. SDF may not be an efficient way as switching cannot

be implemented using SDF. The Fig3 represents the high level BDF modeling of the macro

block processing in the H.26L Encoder. The parallelization methods [3] can then be applied to

improve the performance of the encoder.

 t 1 1 1 1 1
 MB 1 1 1 1 1 1 1 1 1 1 1 1 1

 1 1 1 1
 1 1
 1
 1 1 1
1
 1 1
1
1 T/F

 1

Fig 3. BDF Model of the H.26L Encoder

S/
W

 T

F

S
E
L.

T

F

S
U
B
S
T
R
A
C
T

 C
 O
 P
 Y

D

C

T

Q

 C
 O
 P
 Y

INTRA

INTER

 INTRA/
 INTER

 ADDER

I ‘QDCT

DELAY

E
N
T.
C
O
D.

 9

 The firing rules for the BDF are the same as that of SDF and each actor is enabled only

when it has all the inputs. The arcs in the BDF model represent the flow of data tokens from one

actor to another. The token type is block based (16 *16). The block based data type is used to

facilitate the computation of inverse transform/quantization. Some macro block information is

also needed in the InterPrediction block and is embedded in the block-based type.

Each Macro Block from the input picture frame is taken as an input and is processed by

the Intra/Inter actor which decides whether the macro block has to be predicted using Inter

prediction mode or using Intra prediction mode. The intra coding actor predicts all pixels in each

block in the spatial domain. There are six modes for prediction of 4x4 luminance blocks,

including DC prediction (mode 0) and five directional modes, (Vertical, Diagonal,

Vertical/Diagonal, Horizontal, Horizontal/Diagonal). In addition, there are four modes of

prediction (Vertical, Horizontal, DC prediction, plane prediction) available for coding macro

blocks of size 16x16. The inter coding actor predicts the motion vector using median prediction

or direct segmentation prediction to the accuracy of ¼ pel in the low complexity mode and 1/8

pel in the higher complexity model.

The subtract actor subtracts the predicted input from the original input. The transform/

quantization actor computes the transform based on integer spatial transform that is an

approximation of DCT and also does the quantization of the coefficients based on the

quantization parameter. The inverse transform/quantization does the inverse of the transform and

quantization and is fed as a feedback loop to the interprediction actor. There is also an initial

delay token to avoid deadlock. The entropy-coding actor does either of the two types of

encoding –UVLC and CABAC to further compress the quantized coefficients.

 10

4. Ptolemy Classic:

Ptolemy Classic [6] is an environment for simulation and prototyping of heterogeneous

systems. It uses modern object-oriented software technology (C++) to model each subsystem in a

natural and efficient manner and to integrate these subsystems into a whole.

5. Proposed Work:

By making use of the formal model of computation [6], one can get inherent parallelism.

Converting the C code to C++ and importing it into SDF actors introduces additional processing

overhead, because the domain must provide a means for communication between actors. By

applying a formal model of computation to the video codec and carefully modeling the actors in

such a way that the overhead in synchronizing the actors is less, speed and memory efficiency

could be gained which can be compared to the existing codec publicly available [7].

In order to achieve the above objectives, our project plan is to:

1. Further model the interprediction actor using the formal model of computation eg. SDF as

intensive computation is involved in the interprediction actor.

2. Simulate the model using Ptolemy Classic [6] and analyze the simulation results.

 11

References

[1] F. Kossentini, A. Joch, G. Sullivan and P. Topiwala, “Overview and performance evaluation of the ITU-T draft

H.26L video coding standard,” Proc. Society of Photo-Optical Instrumentation Engineers, Dec. 2001, vol. 4472, no.

290, pp. 290-306.

[2] G. J. Sullivan, T. Wiegand, and T. Stockhammer, ”Using the Draft H.26L Video Coding Standard for Mobile

Applications, “ in Proc. IEEE International Conference on Image Processing, Thessaloniki, Greece, Sep. 2001,

invited paper.

 [3] K. K. Leung, H. C. Yung and Paul Y. S. Cheung, “Parallelization Methodology for Video Coding: An

Implementation on the TMS320C80,” IEEE Transactions on Circuits and Systems on Video Technology, vol.10,

no.8, pp. 1431-1425, Dec. 2000.

[4] B. Erol, F. Kossentini, H. Alnuweiri, “Efficient Coding and Mapping Algorithms for Software-Only Real-Time

Video coding at Low Bit Rates,” IEEE Transactions on Circuits and Systems on Video Technology, vol.10, no.6,

pp. 843-856, Sept. 2000.

[5] Y. He, I. Ahmed and M. L. Liou, “A software-based MPEG-4 video encoder using parallel processing,” IEEE

Trans. Circuits and Systems for Video Techology, vol. 8, no.7, pp. 909-920, Nov. 1998.

[6] Buck, Ha, Lee, and Messerschmitt, “Ptolemy: A mixed-paradigm simulation/prototype platform in C++,”

Proceeedings of the C++ At Work Conference, Santa Clara, CA, Nov. 1991.

[7] “The PictureTel Standards Page,” http://standard.pictel.com (Current March 2002).

[8] Y. He, F. Wu, S. Li, Y. Zhong and S. Yang, “H.26L-based fine granularity scalable video coding,”

http://research.microsoft.com/~fengwu/papers/h26l_iscas_02.pdf (Current March 2002).

[9] C. He and S. Zhong, “System Modeling and Software Based Implementation of MPEG-4 Video Encoder,” Proc.

IEEE Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, Oct. 29-Nov. 1, 2000, vol. 2,

pp. 1058 –1062.

[10] J. I. Kim and B. L. Evans, “System Modeling and Implementation of a generic video codec,” Proc. IEEE

Second Workshop on Multimedia Signal Processing, Los Angeles, CA, Dec 1998, pp 311-316.

