
   EE 382C EMBEDDED SOFTWARE SYSTEMS 
 

Literature Survey Report 
 

Characterization of Embedded Workloads 

Ajay Joshi 

March 30, 2004 

 
ABSTRACT 

Security applications are a class of emerging workloads that will play a central 

role in determining the performance of next generation embedded microprocessors.  The 

objective of this research work is to understand the inherent workload characteristics of 

security applications, and analyze their impact on microprocessor architecture design. 

The outcome of this work will provide an insight into the performance bottlenecks in 

existing architectures that challenge security applications, and enable us to propose 

architectural enhancements required to boost the performance of embedded and digital 

processors running security applications.  In this report we summarize the popular 

methodologies for characterizing workloads, survey classic studies that have been 

performed to measure the degree of parallelism in applications, and present a proposal to 

study the micro-architecture independent characteristics of security applications.  

I.  Introduction 

The phenomenal growth in the Information Technology industry has resulted in 

the emergence of several new computer applications.  The computer systems that run 

these applications were designed before the advent of these workloads, and their 



 2

architectural features may not match the application characteristics; possibly resulting in 

loss of performance. In order to ensure that microprocessors and computer systems of 

tomorrow deliver highest performance, it is extremely important for computer architects 

to identify these emerging workloads and understand their idiosyncrasies that challenge 

the existing architectures.   

In this work, we identify security applications as a key emerging embedded 

workload that will play a central role in determining the performance of tomorrow�s 

embedded microprocessors. The proposed research comprises of understanding the 

characteristics of these applications, accounting for the cycles spent during their 

execution, and identifying possible sources for the loss of performance.    

 This report is organized as follows: Section II explains the motivation behind 

characterizing the behavior of security applications.  Section III describes the previous 

research in workload characterization, and techniques that have been used to measure 

parallelism in an application.  Section IV outlines the objectives of this project and 

proposes a methodology for carrying out the research work.  Section V summarizes the 

key findings and draws conclusions from the literature review that influence the 

methodology in our research work. 

II. SECURITY APPLICATIONS � AN EMERGING WORKLOAD 

Until a few years ago, general-purpose processors and computers have been the 

driving force in shaping the digital economy.  However, recently we have seen the 

proliferation of embedded systems in our daily lives through telecommunications, 

consumer, automotive, and office automation applications.  Many of these embedded 

applications like cell phones, text message pagers, wireless hand held devices, pay-TV, 



 3

DSL modems, audio-video consumer products, telephony systems, and network routers, 

heavily rely on security mechanisms. Data security will play a central role in the design 

of these embedded systems.  Security applications use cryptography algorithms to 

encrypt and decrypt messages sent over an insecure medium.  It is therefore important to 

understand the characteristics of cryptography algorithms in order to design efficient next 

generation embedded processor and digital signal processor architectures. 

II.  PREVIOUS WORK 

A.    WORKLOAD CHARACTERIZATION APPROACHES 

Several early studies in characterizing program behavior are available in literature 

[3][4].  Workload characteristics have been measured at three different levels: source 

code, micro-architecture independent, and system level [7].  Source code level 

characterization yields information about inherent nature of the application.  However, 

this technique has not gained much popularity because of the difficulty in standardizing 

the measured characteristics across different programming language implementations.  

Micro-architecture independent attributes, although not biased by a particular machine 

implementation, are influenced by the programming language, Instruction Set 

Architecture (ISA), compiler, and operating system.  System level characteristics are 

micro-architecture dependent, and are widely used because they provide an insight into 

the match between an application and architecture.  

B. WORKLOADS STUDIED 

During the seventies, eighties, and early nineties, researchers mainly focused on 

studying the characteristics of scientific and high-performance applications written in 

Fortran.  In the last ten years, general-purpose, e-commerce, web, graphics, and 



 4

multimedia workloads, developed in C, C++, Java, and other web technologies have 

gained popularity.  It is only during the last few years, due the growing market segment 

of embedded systems, embedded workloads have been the focus of study of computer 

architecture researchers.  However, characterization of embedded workloads has mainly 

concentrated on network, telecommunication, signal processing, and multimedia 

applications.  

       C.  MEASURING PARALLELISM IN PROGRAMS 

Parallelism in a program can be classified into three different types: Instruction 

Level Parallelism (ILP), Data Level Parallelism (DLP), and Thread Level Parallelism 

(TLP) [6]. These workload characteristics respectively measure the number of 

instructions, data, and threads in the program that can be concurrently executed - 

assuming that infinite machine resources are available.  Understanding the parallelism in 

programs is an important in selecting the type of computer system (uniprocessor or 

multiprocessor), and the microprocessor architecture philosophy (superscalar, VLIW, 

Vector etc.). The possible limits of parallelism have been investigated for almost three 

decades.  Numerous experiments have been performed that yield widely varying results 

on the limits of parallelism; primarily due to the differences in machine models assumed 

[12].  In this section we review three such studies that used different approaches and 

methodologies. 

Wall�s [2] study on the limits of ILP is considered to be the most thorough limit 

study to date, accounting for speculative execution, memory disambiguation, and other 

factors.  Wall used the instruction trace of programs from the Standard Performance 

Evaluation Council (SPEC) benchmark suite and other standard benchmarks, to compute 



 5

the ILP speedup for various scenarios, generating a lot of valuable data, but no simple 

answers.  Speedups ranging from 7-60 were observed on these sample programs, but 

Wall himself is much more pessimistic and sees an average parallelism of only 5-7. 

Arvind, Culler, and Maa [1] used dataflow program graphs to develop a 

methodology for quantifying the parallelism in real programs.  This technique allows the 

programs to be studied in full detail, without biasing their behavior by implementation 

constraints, and hence draws a clear distinction between the parallelism inherent in a 

program and that achieved with a specific implementation.  The results of this study bring 

us close to understanding the characteristics of a program, and analyze whether a 

program has enough parallelism to benefit from an n-way machine. 

Lam and Wilson [10] measured the parallelism of programs in the SPEC 

benchmark suite on seven abstract machines that are a combination of three techniques � 

control dependence analysis, speculation with branch prediction, and multiple flows of 

control.  The results suggest that the constraint imposed by control flow is the bottleneck 

that limits parallelism in programs.  They observe that local regions of code have limited 

parallelism, and control dependence analysis is useful in extracting global parallelism 

from different parts of a program.  

From this survey we can conclude that the real limit on program parallelism is a 

combination of inherent parallelism in the algorithm, and the parallelism that is further 

exploited by speculative micro-architectures and aggressive compilers.  Although it is 

possible to place an upper bound on the former, we can only place a lower limit on the 

latter.  



 6

III.  THE PROJECT 

A.  OBJECTIVES 

The problem being addressed in this research is to characterize the behavior of 

security workloads by measuring their micro-architecture independent attributes.  This 

approach will enable us to understand the intrinsic behavior of security applications 

without being influenced by a specific micro-architectural implementation.    

The deliverables of this project are: quantification of the inherent parallelism in 

security applications, their micro-architecture independent characteristics, and an analysis 

of the impact of these characteristics on microprocessor architecture design. 

The contributions of this study are: pin-pointing bottlenecks in existing 

architectures that challenge these applications, and propose architectural enhancements to 

embedded and digital signal processors to boost their performance on these classes of 

applications.  This study will also lead to a better understanding of the nature and 

intrinsic characteristics of security applications that will help in effectively interpreting 

performance measurements and simulation results. 

B. METHODOLOGY 

In this section we outline the methodology by specifying the selection of 

representative workloads, approach used to quantify the parallelism, and the simulation 

environment used to measure the micro-architecture independent characteristics.   

Cryptography algorithms are at the heart of all security applications.  These 

algorithms use mathematics to encrypt and decrypt messages that are transmitted over in 

insecure communication medium. Private Key (symmetric cipher) and Public Key 

(asymmetric cipher) are the two most popular varieties of encryption algorithms.  Public 



 7

Key algorithms are popular because they eliminate the need to transmit a key over an 

insecure network by the using different keys for ciphering and deciphering the data.  We 

therefore select the following symmetric key ciphers as our representative workloads: 

Pretty Good Privacy (PGP) sign and verify, Rijndael, Blowfish Encrypt and Decrypt, and 

Secure Hash Algorithm (SHA).  

In order to study the inherent parallelism that exists in the program we will use the 

methodology suggested by Arvind, Culler, and Maa [1].  This enables us to analyze the 

program parallelism without restricting to an implementation in a particular programming 

language.  The algorithms mentioned above will be modeled using Synchronous Data 

Flow (SDF) or Boolean Dataflow (BDF) models of computation in Ptolemy.  These 

programs will then be simulated to understand the sequential nature that is inherent in the 

program.   

The second part of this study involves studying the micro-architecture independent 

characteristics of the cryptography algorithms.  Advanced RISC Microprocessor (ARM) 

is one of the most popular embedded processor core used in embedded applications.  We 

therefore choose Strong-ARM cycle accurate simulator environment to measure the 

micro-architecture independent characteristics. 

IV. SUMMARY & CONCLUSION 

We have identified security applications as an emerging workload and propose to 

study the micro-architecture independent characteristics of these classes of applications.  

The outcomes of this study will involve identifying the bottlenecks in existing 

architectures that challenge these applications, and a propose techniques for architectural 



 8

enhancements required in embedded and digital signal processors to eliminate these 

bottlenecks.  

The previous work in workload characterization has mainly concentrated on 

scientific, web, commercial, e-commerce, and graphics workloads in the general-purpose 

processor domain, and networking, telecommunication, and signal processing workloads 

in the embedded processor domain.  There has been very little work in characterizing the 

behavior of security applications. 

Researchers have used three different approaches to quantify the parallelism in 

applications: dataflow graphs, constructing a dependency flow graph using instruction 

traces, and measuring speedup on abstract machines.  We choose the dataflow graph 

technique for the purpose of our study because the outcome will be independent of 

particular limitations and features of programming languages.   

REFERENCES 

[1] Arvind, D. Culler, and G. Maa, �Accessing the benefits of Fine-Grain Parallelism in Dataflow 
Programs�, The International Journal of Supercomputer Applications, 2(3), November 1988. 

 
[2] D. Wall, �Limits of instruction level parallelism�, In Proceedings of ASPLOS-4, volume 26, pages 

176-189, April 1991. 
 
[3] D.J. Kuck, Y. Muraoka, and S.C. Chen, �On the Number of Operations Simultaneously Executable in 

FORTRAN-like Programs and their Resulting Speedup�, ACM Transactions on Computers, C-21: 
1293-1310, December 1972. 

 
[4] K. Agrawala, R. M. Bryant, and J. M. Mohr, �An approach to the workload characterization 

problem�, Computer 9(6), pp. 18-32, June 1976. 
 
[5] K. Theobald, G. Gao, L. Hendren, �On the limits of Program Parallelism and its Smoothability�, In 

25th Annual Symposium on Microarchitecture, pages 10-19, December 1992.  
 
[6] Karkowski, H. Corporall, �Exploiting Fine-and Coarse-grain Parallelism in Embedded Programs�, In 

International Conference on Parallel Architectures and Compilation Techniques, October 12-18, 
1998. 

 
[7] L. John, P. Vasudevan, and J. Sabarinathan, Workload Characterization: Motivation, Goals and 

Methodology, in Workload Characterization: Methodology and Case Studies, IEEE Computer 
Society, edited by Lizy John and A. M. G. Maynard, 1999. ISBN 0-7695-0452-3. 

 



 9

[8] L. Wills, T. Taha, L. Baumstark Jr, S. Wills, �Estimating Potential Parallelism for Platform 
Retargeting�, Proceedings of the 9th Working Conference on Reverse Engineering (WCRE), pages 
55-64, IEEE Computer Society Press, Richmond, VA, October 2002. 

 
[9] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, R. Brown, �MediBench: A free, 

commercially representative embedded benchmark suite�, IEEE 4th Annual Workshop on Workload 
Characterization, Austin, TX, December 2001. 

  
[10] M. Lam, R. Wilson, �Limits of Control Flow on Parallelism�, In Proceedings of the 19th Annual 

International Symposium on Computer Architecture Gold Coast, Australia, May 19-21, 1992, pp. 46-
57. 

 
[11] Nicolau, J. Fisher, "Measuring the Parallelism Available for Very Long Instruction Word 

Architectures", IEEE Transactions on Computers, Vol. C- 33, No. 11, pp. 968-976, November 1984. 
 
[12] Ramakrishna Rau, J. Fisher, �Instruction-Level Parallel Processing: History, Overview, and 

Perspective�, The Journal of Supercomputing 7(1-2), 1993. 
 
[13] T. Austin and G. Sohi, �Dynamic Dependency Analysis of Ordinary Programs�, In Proceedings of 

ISCA-19, pages 342--351, May 1992. 


