Modeling Cooperative Diversity in a Wireless Relay Channel

Alex Icaza

The University of Texas at Austin
Embedded Software Systems
Spring 2004

Overview

- Problem Statement & Objectives
- Background
- Cooperative Diversity

- Demonstration
- Conclusion

Problem Statement & Objectives

Problem:

How can we combat attenuation due to multiple destructively interfering signal paths in wireless channels?

Well known issue in wireless systems known as

"Multi-path Fading"

Objective:

Develop software framework to model low energy/complexity solutions for combating multi-path fading

This attenuated signal is what's "seen" at receiver

Background

- Diversity: Well-known solution to multi-path fading
 - Send copies of signal through <u>uncorrelated</u> paths to receiver
 - Signals combined at receiver; individual channel effects averaged
- Types of diversity
 - Spatial (*i.e.* traditional antenna arrays, MIMO)
 - Temporal (*i.e.* error correcting codes)
- Multi-path fading channel model
 - Rayleigh Fading: Envelope, R, of faded signal defined by:

$$R = \sqrt{X^2 + Y^2}$$

where *X* and *Y* are independent zero-mean Gaussian random variables with unit variance

Cooperative Diversity

- Achieves spatial diversity
- Wireless nodes distributed in space (*i.e.* ad-hoc network)
- Nodes cooperate by retransmitting each others signals
- Collection of nodes becomes a "distributed antenna array"
- Relay nodes may:
 - amplify-and-forward
 - decode-and-forward

Modeling Cooperative Diversity with LabVIEW

- Why LabVIEW?
 - native dataflow language
 - extensive signal processing functions
 - modulation toolkit available
 - recommended by Behnaam Aazhang, one of the fathers of cooperative diversity

• Entire system (*i.e.* nodes and channels) modeled as Synchronous Dataflow (SDF)

Modeling Amplify-and-Forward Relaying

- Strict SDF (w/ no shared buffers)
- Nodes
 - 1Kb messages
 - 16 QAM modulation
 - Root raised cosine pulse shaping with $\alpha = 0.5$

Channels

- Multi-tap (variable) FIR filters
- Made uncorrelated by differing random seeds
- Additive White Gaussian Noise with $E_b/N_0 = 10dB$

Demonstration

 Cooperative diversity with amplify-and-forward relay channel in LabVIEW

Available for download soon:

http://www.ece.utexas.edu/~icaza

Conclusion

- Cooperative Diversity achieves spatial diversity with less complexity and power than traditional antenna arrays
- Modeled effectively as SDF with LabVIEW
- Moving forward
 - Add temporal diversity/coding (i.e. distributed turbo codes [Valenti, 2003])
 - Investigate adaptive protocols for cooperation

Thank You!