
0

Distributed Deadlock Detection for

Distributed Process Networks

Alex Olson

Embedded Software Systems

Abstract

The distributed process network (DPN) model allows for greater scalability and performance over a

non-distributed process network model. This paper presents a distributed deadlock detection algorithm

applicable to process networks. The algorithm efficiently detects both local and global deadlocks. In

addition, the deadlock detection algorithm has minimal bandwidth and memory requirements. Lastly, the

implementation of a high-performance DPN framework that detects deadlocks is presented. Furthermore,

this implementation supports the future addition of dynamic process creation/migration (ability to

create/relocate processes at run-time).

May 8, 2004 DRAFT

0

CONTENTS

I Introduction 1

II The Process Network Model 2

II-A Kahn . 2

II-B Parks . 2

II-C Geilen and Basten . 3

II-D Allen and Evans . 3

III Deadlock Detection 4

III-A Previous Work . 4

III-B Mitchell and Merritt’s Algorithm . 4

IV Distributed Process Network Framework Design 5

V Performance 8

VI Conclusion 9

References 9

May 8, 2004 DRAFT

1

I. I NTRODUCTION

There are a variety of approaches for high-performance computing. Many of these rely on

exploiting the available parallelism in a computation and are highly effective. One can attempt

to find parallelism by examining program code, as done by modern compilers and processors.

Another approach is to initially design the computation with parallelism in mind, by starting

with a highly parallelizable model. One such model is the Kahn process network (PN) model

[1], which consists of concurrent processes communicating over one-way channels.

The beauty of the Kahn process network model lies in its simplicity. It guarantees de-

terminism only based upon the flow of data. The process network model is highly suitable

for signal processing applications. For targeting desktop computers, several (non-distributed)

PN frameworks exist. For these, symmetric-multiprocessor (SMP) workstations can be used to

achieve high-performance, as shown in [2]. However, SMP desktops are becoming extremely

expensive. Currently, multiple single-CPU workstations may be purchased for the price of a single

SMP-workstation, and they offer greater combined performance. Thus, adistributed process

network framework (DPN) allows for greater performance at a reduced economic cost over PN

implementations running on SMP workstations. Unfortunately, few DPN frameworks exist.

Distributing the process network model incurs challenges as channels take on non-zero la-

tencies. Furthermore, the lack of a global clock and shared memory make correct deadlock

detection more difficult. The primary objective of this paper is to research and design a high-

performance DPN framework that performs distributed deadlock detection. This framework will

provide a basis for the future research of dynamic process migration, dynamic load balancing,

and other challenges. Deadlock detection is required for process network scheduling algorithms,

since ‘artificial deadlocks’ may be introduced by placing bounds on memory usage [3]. An

May 8, 2004 DRAFT

2

original contribution of this paper is an algorithm that detectsboth local and global deadlocks

in distributed process networks. Furthermore, this algorithm is also applicable to non-distributed

process networks.

II. T HE PROCESSNETWORK MODEL

A. Kahn

In 1974, Kahn proposed [1] a determinate model of computation based on data tokens (and

their flow). The termtoken is a general term for any unit of data. He suggested that multiple

processes executing concurrently and communicating over unidirectional channels could perform

a computation. His channels may be modeled as reliable FIFO queues, but may be unbounded

in length. The channels/queues provide a loose coupling between producers (processes emitting

tokens) and consumers (processes receiving tokens). Determinism is guaranteed with blocking

reads. A process is blocked if it attempts to read more tokens from a channel than are available.

Furthermore, a process is not allowed to test a channel for the presence of tokens. Additionally,

it may only attempt to read or write to only one channel at a time. This model is determinate

in that thesequenceof tokens output from any process is only a function of thesequenceof

tokens arriving at its input(s). Thus, the ‘correctness’ of a computation under this model is not

affected by the rates or order in which processes execute.

B. Parks

Kahn’s assumption of ‘unbounded channel capacities’ translates into ‘unbounded memory’

usage when the process network model is implemented on a computer. Since the process network

model is Turing complete, one cannot predict memory requirements statically [4]. In 1995, Parks

proposed [3] an algorithm for scheduling process networks under bounded channel capacities.

May 8, 2004 DRAFT

3

He proposed that a process is also blocked if it attempts to write one or more tokens to a channel

lacking sufficient available capacity. This has the potential to create, using Parks’ terminology,

artificial deadlock. These deadlocks are artificial in that sense they arise only from placing

bounds on channel capacities. These deadlocks would not have occurred in the original Kahn

model. Park’s algorithm waits until the system reaches global deadlock and then considers all

channels to which a blocked process is writing. Of these, the algorithm increases the capacity

of the smallest full channel, so the write to that channel can complete. He proves this algorithm

finds a set of bounded channel capacities whenever such bounds exist.

C. Geilen and Basten

Geilen and Basten show [5] that Parks’ algorithm can be applied whenlocal deadlocks are

detected, instead of waiting for detection ofglobal deadlock. Their scheduling algorithm also

maintains bounds on channel capacities when such bounds exist. This is significant because not

all local deadlocks will eventually cause global deadlock. For example, if a system is composed

of two disjoint computations, deadlock in one will not cause deadlock in the other.

D. Allen and Evans

Allen and Evans combined [2] the process network model with Karp and Miller computation

graphs. In the resulting model, known ascomputationalprocess networks, a process mayconsume

fewer tokens than itreads. For example, if a process attempts to read 32 tokens, and 20 are

available, it will be blocked until the channel holds 32 tokens. However, it may consume just

1 token upon reading 32. The remaining 31 tokens will be read again on the next read of

32 tokens. This model is highly useful for many computations, such as FIR filters. It allows

memory bandwidth to be halved as this model often eliminates the need to copy tokens from the

May 8, 2004 DRAFT

4

channel buffer into an application-specific buffer. This model also makes many types of processes

memoryless, as their only memory lies in the channel itself. In modern desktop computers,

processors run at several times the speed of the memory subsystem. This model is significant

as the speed of some computations is bounded by memory bandwidth rather than CPU speed.

Artificial deadlock is still possible and either Park’s or Geilen and Basten’s scheduling algorithms

may be applied.

III. D EADLOCK DETECTION

A. Previous Work

Since the process network model is Turing complete, deadlock is only detectable at run-time.

Deadlock detection has been implemented in a few non-distributed PN implementations [6], [7],

[8], [3]. All of these detect only global deadlock. Few distributed PN (DPN) implementations

exist: [9], [10], [11]. Of these, none detect deadlocks. What follows in the next section is an

original application of an existing deadlock detection algorithm to distributed process networks.

B. Mitchell and Merritt’s Algorithm

Kahn’s specifications for his process network model include that a process may be blocked

on at most one other process at a time. Of the many distributed deadlock detection algorithms,

we need only consider the set commonly known as ‘single-resource’ algorithms. This class of

algorithms assumes that a process is waiting on at most one other process. An important aspect

of these algorithms is they are not concerned with actual management of resources, but only the

manner in which a processwaits on another process. One very simple algorithm was developed

by Mitchell and Merritt [12]. Although they developed this algorithm for distributed databases,

this paper shows a novel application of their algorithm to the distributed process network model.

May 8, 2004 DRAFT

5

In their algorithm, each process contains two labels: a public label and a private label. Here,

a label is just an abstraction for a numeric value. Initially, the public labels of all processes are

initialized to unique values. Each process’s private label is set equal to its corresponding public

label. When a processX begins waiting on another processY , processX sets both its labels

to a value greater than the public labels of bothX andY . This step is known as theblocking

step and the waiting process,X, is said to beblocked. While some processX is blocked, it

periodically polls the public label of the process,Y , for which it is waiting. The frequency at

which the polling takes place is not important. During this time, if the public label of process

Y becomes greater than that ofX, X sets only its public label to be equal to that ofY . This

action is known as thetransmitstep. For a cycle ofN waiting processes, the transmit step will

be invoked at mostN − 1 times before deadlock is detected. This algorithm also ensures that in

a cycle of waiting processes, exactly one process detects deadlock. Furthermore, false deadlock

detection is impossible. These two qualities make this algorithm an ideal deadlock detection

scheme in the implementation of a PN scheduling algorithm.

IV. D ISTRIBUTED PROCESSNETWORK FRAMEWORK DESIGN

One goal of this project was to create a high-performance distributed process network imple-

mentation. This implementation will provide a basis for future exploration of capabilities such

as dynamic process migration (relocating processes at run-time) and dynamic load balancing

(instantiating/relocating processes at run-time to equalize server load). For performance reasons

the C++ language was chosen. Multi-platform source compatibility is achieved through the use

of POSIX functions.

In my design, each process contains two threads. The first is acomputationthread that performs

the desired computation, such as an FIR filter, etc. The second thread is acommunication

May 8, 2004 DRAFT

6

thread. This design is similar to the decoupled access/execute processor architecture [13]. The

communication thread is responsible for sending/receiving tokens and performing deadlock

detection. Relative to each process, two types of channels are defined:incomingchannels and

outgoingchannels. Incoming channels are those from which a process reads tokens. Likewise,

outgoing channels are those to which a process writes tokens. For each incoming or outgoing

channel on which a process communicates, a shared circular queue exists between the two

threads. For incoming channels, this queue represents Kahn’s channel queue. For outgoing

channels, the outgoing channel queue helps to aggregate small tokens into larger groups before

transmission.

The TCP protocol is used by each channel for communication as this protocol provides reliable

and FIFO transmission of data over networks. In transmitting a single TCP/IP packet over an

Ethernet network, there is at least 40 bytes of overhead per packet, due to Ethernet frame headers,

IP headers, and TCP headers. Although the outgoing channel queue could be eliminated, this

would reduce network bandwidth efficiency to less than 10% if 32 bit integers were used as

tokens. This elimination would also increase CPU usage. The Nagle algorithm, present in most

TCP implementations, does not provide any performance benefit here.

Instead of operating at the token level, all communications is performed at the byte level.

Conceptually, a token is a single byte and processes communicate by sending/receiving multiple

tokens at a time. When an outgoing channel establishes a connection to a remote process, it first

obtains the number of bytes available in the remote process’s incoming channel queue and stores

this in a variable namedremoteAvail. When an outgoing channel transmitsx bytes of token

data, it decrementsremoteAvail by x. After a process consumes data from its incoming channel

queue, it sends aBytes Consumedmessage over the TCP link that contains the number of bytes

May 8, 2004 DRAFT

7

consumed. Upon receiving such a message, the outgoing channel increments itsremoteAvail

by this amount. Thus,remoteAvail represents a lower bound on the number of number of bytes

available in the queue of the remote process. The computation thread is blocked if it attempts

to read more data than is present in an incoming channel’s queue or if it attempts to write more

than remoteAvail bytes on an outgoing channel. The communication thread of each process

runs once per 5ms. Thus, if a process consumes 100 bytes in 4ms, oneBytes Consumedmessage

may be sent. This same mechanism also helps to aggregate tokens before transmission.

For the transmission of data, a lightweight serialization mechanism has also been implemented.

The interface is similar to that of Java, but it is more efficient in terms of CPU usage and

bandwidth. C++ classes can be serialized by inheriting from aSerializable class and then

defining a method for serialization and one for de-serialization. Platform-dependent byte re-

ordering is also performed on all basic C/C++ data-types.

To implement deadlock detection, Mitchell and Merritt’s algorithm is used. Since this deadlock

detection algorithm does not require any arrays or a list of all processes, as in the case of

other deadlock detection algorithms [14], this algorithm is compatible with dynamic process

creation/deletion/migration. In this implementation, the ‘label’ is an ordered pair(count, p) of

two integers. Initially each the labels of each process are initialized to(pid, pid) where pid

is a globally unique identifier for that process. When the computation thread of processX is

blocked waiting on processY , the label of processX becomesmax(X.count, Y.count), X.p).

For comparison purposes, the label of processX is greater than the label of processY if

(X.count > Y.count) OR (X.count = Y.count AND X.p > Y.p). To reduce network band-

width, the deadlock detection algorithm is only activated if a process’s computation thread has

been (continuously) blocked for a sufficient period of time, currently set at 1 second. Likewise,

May 8, 2004 DRAFT

8

the same interval is also used for polling in thetransmitstep of the algorithm. Deadlock detection

data and process token data are sent through the same TCP link. When a process becomes blocked

on a read or write, it sends aLabel Requestmessage. If a process becomes blocked on a read

while the needed token data is in transit, the FIFO property of the TCP protocol ensures that

the token data will arrive before the label of the remote process. Thus the blocked process will

never perform the blocking step of the deadlock detection algorithm if there is data already in

transit. Likewise, the same guarantee holds for processes blocked on writes and the arrival of

Bytes Consumedmessages.

An extra optimization that has been implemented is that for an outgoing channel, token data

packets are only sent if there is at least one kilobyte of data in the queue. Upon the receipt

of a Label Requestmessage, any remaining data is sent before the process’s public label. This

optimization helps to minimize communication protocol overhead and CPU usage.

Experimental tests confirm this DPN implementation detects deadlocks involving all processes

blocked on reads, all processes blocked on writes, and artificial deadlocks involving some process

blocked on writes and others blocked on reads. In terms of the actual interface to reading and

writing tokens, both the ‘regular’ and ‘computational’ process network models are supported.

The interface for the computational process network style is similar to the implementation of

Allen and Evans [2].

V. PERFORMANCE

Experimental tests show that this framework is capable of handling up to two million tokens

per second on an Athlon 1.6 GHz PC. For single byte tokens, the use of queues in the outgoing

channels increased performance by a factor of 20 over the same implementation sending tokens

directly. Furthermore, the processing time per token appears to be independent of the token size.

May 8, 2004 DRAFT

9

Thus the run-time overhead of this framework is negligible if a computation spends significantly

more than0.5µs CPU time per token. In addition, the token aggregation methods described

cause the communication protocol overhead to be negligible.

VI. CONCLUSION

In conclusion, distributing the process network model offers greater performance at reduced

economic cost over a non-distributed model. An original deadlock detection scheme for process

networks has been presented that detects both local and global deadlock. This scheme is ap-

plicable to both distributed as well as non-distributed process network implementations. Lastly,

this paper presents a design of a high-performance distributed process network implementation

that performs deadlock detection.

REFERENCES

[1] G. Kahn, “The semantics of a simple language for parallel programming,”Information Processing, pp. 471–475, 1974.
[2] G. Allen and B. Evans, “Real-time sonar beamforming on workstations using process networks and POSIX threads,” in

IEEE Trans. Signal Processing, Mar. 2000, pp. 921–926.
[3] T. Parks, “Bounded scheduling of process networks,” Ph.D. dissertation, University of California at Berkeley, 1995.

[Online]. Available: citeseer.ist.psu.edu/parks95bounded.html
[4] J. T. Buck, “Scheduling dynamic dataflow graphs with bounded memory using the token flow model,” Ph.D. dissertation,

University of California at Berkeley, 1993. [Online]. Available: citeseer.ist.psu.edu/buck93scheduling.html
[5] M. Geilen and T. Basten, “Requirements on the execution of Kahn process networks,” inProgramming Languages and

Systems, 12th European Symposium on Programming, vol. 2618. Berlin, Germany: Springer-Verlag, 2003. [Online].
Available: http://www.ics.ele.tue.nl/˜mgeilen/publications/esop03.pdf

[6] M. Goel, “Process networks in Ptolemy II,” Master’s thesis, University of California at Berkeley, Dec. 1998. [Online].
Available: http://ptolemy.eecs.berkeley.edu/publications/papers/98/PNinPtolemyII/

[7] B. Vaidyanathan, “Artificial deadlock detection and correction in bounded scheduling of process networks,” Oct. 1999.
[Online]. Available: http://www.ece.utexas.edu/˜bevans/courses/ee382c/projects/fall99/index.html

[8] R. Stevens, M. Wan, P. Laramie, T. Parks, and E. Lee, “Implementation of process networks in Java,” Tech. Rep., July
1997, draft. [Online]. Available: http://www.ait.nrl.navy.mil/pgmt/PNpaper.pdf

[9] A. Amar, P. Boulet, J.-L. Dekeyser, and F. Theeuwen, “Distributed process networks using half FIFO queues in CORBA,”
INRIA, Tech. Rep. RR-4765, Mar. 2003. [Online]. Available: http://www.inria.fr/rrrt/rr-4765.html

[10] T. Parks and D. Roberts, “Distributed process networks in Java,” inInternational Workshop on Java for Parallel and
Distributed Computing, Nice, France, Apr. 2003.

[11] D. W. Julien Vayssìere and A. Wendelborn, “Distributed process networks,” University of Adelaide, Austrailia, Tech.
Rep. TR 99-03, Oct. 1999, draft. [Online]. Available: http://www.cs.adelaide.edu.au/˜dpn/documents/tr9904.ps

[12] D. P. Mitchell and M. J. Merritt, “A distributed algorithm for deadlock detection and resolution,” inACM Symposium on
Principles of Distributed Computing, 1984, pp. 282 – 284.

[13] J. Smith, “Decoupled access/execute computer architectures,” in9th Annual Symposium on Computer Architecture, May
1982, pp. 112–119.

[14] K. M. Chandy, J. Misra, and L. M. Hass., “Distributed deadlock detection,” inACM Trans. on Comp. Systems, vol. 1,
no. 2, May 1983, pp. 144–156.

May 8, 2004 DRAFT

