
0

Distributed Deadlock Detection for

Distributed Process Networks

Alex Olson

Abstract

This paper presents a discussion of the Kahn process network (PN) model and the challenges

in distributing it onto multiple networked workstations. Compared to a non-distributed PN model, a

distributed PN model is more scalable in terms of performance and has significantly lower cost. Although

additional distribution-specific challenges exist, existing distributed systems algorithms can solve them.

An original contribution of this paper is a distributed process network implementation that performs

deadlock detection.

Index Terms

Parallel, Concurrent Programming, Distributed Programming, Models of Computation, Process

networks, distributed deadlock detection, Kahn

DRAFT April 2, 2004

0

CONTENTS

I Context of Research 1

II Objectives 1

III Existing Theoretical Work 2

III-A Process Networks . 2

III-A.1 Kahn . 2

III-A.2 Parks . 2

III-A.3 Geillen & Basten . 3

III-B Problems in Distribution . 4

III-C Distributed Systems . 5

III-C.1 Distributed Deadlock Detection 5

III-C.2 Distributed Mutual Exclusion 6

IV Existing Implementations 7

V Implementation Plan 7

VI Conclusion 7

References 8

DRAFT April 2, 2004

1

I. CONTEXT OF RESEARCH

There are a variety of approaches for high-performance computing. Many of these rely on

exploiting the available parallelism in a computation and are highly effective. One can attempt

to find parallelism by examining program code, as done by modern compilers & processors.

Another way is to initially design the computation with parallelism in mind, by starting with a

highly parallelizable model. One such model is Kahn’s process network (PN) [1], which involves

the idea of parallel processes communicating over one-way channels.

The beauty of Kahn’s model lies in its simplicity. It guarantees determinism only based

upon the flow of data – not relying on timing, mutual exclusion, or any other synchronization

mechanism. The process network model is highly suitable for signal processing applications.

For targeting desktop computers, several PN frameworks exist. All of these tend to map pro-

cesses onto threads. Thus, symmetric-multiprocessor computers (SMP) can be used to achieve

high-performance. Recently, Allen used [2] the process network model to perform real-time

sonar beamforming on a UNIX workstation. However, SMP desktops are becoming extremely

expensive. Currently, the price of multiple single CPU workstations equals the price one SMP

workstation, and they offer greater combined performance. In addition, gigabit networking is

becoming affordable. It is no wonder the idea of cluster computing is becoming popular. Thus,

it is desirable to have adistributedprocess network framework (DPN). Such a framework allows

for greater performance and reduced cost over PN implementations on single SMP desktops.

Unfortunately, few DPN frameworks exist and they are only in early stages of development.

II. OBJECTIVES

The primary objective of this project is to research and design a high-performance distributed

process network framework. Such a framework should implement deadlock detection, dynamic

process migration, and load balancing. Deadlock detection is necessary to detect termination

and/or the condition of a buffer being too small. This will be explained in section III. Dynamic

process migration refers to the ability to relocate a process from one workstation to another

at runtime. This capability is useful should the need arise to add or delete a workstation from

the network at run-time. It is also a highly useful capability for the implementation of dynamic

load balancing. With process networks, the behavior of any process is not statically predictable.

Thus, dynamic load balancing could be highly beneficial for ensuring maximum performance.

April 2, 2004 DRAFT

2

However, the scope of this paper will be limited to a discussion of process networks, problems

in distribution, and plans for distributed deadlock detection.

III. E XISTING THEORETICAL WORK

A. Process Networks

1) Kahn: In 1974, Kahn proposed [1] a determinate model of computation based on data

tokens (and their flow). The termtoken is a general term for any unit of data. He suggested

that multiple processes executing concurrently and communicating over channels could perform

a computation. The only requirements of his channels are that they be reliable FIFO queues

but may be unbounded in length. Thus, the queues provide a loose coupling between producers

(processes emitting tokens) and consumers (processes receiving tokens).

One can visualize Kahn’s model as a group of processes which each consume (read) one

or more tokens from one or more inputs and produce (write) one or more tokens to one more

or more outputs. If a process attempts to read more tokens than are available on a channel,

the process blocks until enough tokens are available. A process only blocks on at most one

channel at a time. In addition, a process may not to test a channel for the presence of tokens.

However, a process enjoys a great deal of freedom; it can read and/or write tokens at any time.

Additionally, a process with multiple inputs and/or multiple outputs is not required to perform

a read or write on all ports. As simple as these rules are, they do guarantee determinism. In

Kahn’s model, global deadlock only occurs when a computation terminates, and local deadlock

is impossible. At termination, all processes are blocked on reads and all channels are empty.

Another nice feature of this model is that it is completely independent of time. As long as all

processes eventually have the opportunity to make progress, it doesn’t matter if some processes

run faster, receive more CPU time, or if they execute in varying orders. The sequence of tokens

produced at all processes will be unaffected. Kahn also guarantees that his model produces

complete output, regardless of scheduling. The simplicity and determinacy of process networks

makes it an extremely attractive model for distributed computations, especially in heterogeneous

environments.

2) Parks: There is one main drawback to Kahn’s model – it relies upon unbounded channel

capacities. In process networks, it is generally undecidable as to whether or not a set of bounded

DRAFT April 2, 2004

3

channel capacities exists. It is also undecidable if a process network will terminate. Both of

these properties are because the model is Turing complete [3].

The assumption of unbounded channel capacities makes the model not feasible for real-

world implementation. Twenty-one years after Kahn, Parks proposed [4] a bounded scheduling

algorithm. The impact of Parks’ algorithm is that process networks can execute under bounded

memory. Thus, the PN model is no longer a theoretical toy, but a powerful & practical compu-

tational model.

Parks’ algorithm puts limits on channel capacities (queue sizes). If a process attempts to write a

token to a full channel, the process will block until the channel is not full. Parks also distinguishes

between two types of deadlocks. ‘True’ deadlocks are those described in Kahn’s model, while

‘artificial’ deadlocks are caused by bounded channel capacities. Since channel capacities are

not restricted in Kahn’s model, artificial deadlock is impossible. Parks’ algorithm waits until

the system reaches global deadlock. If all processes are blocked on reads then true deadlock

exists and the computation has terminated. However, if all processes are blocked and at least

one process is blocked on a write, then artificial deadlock occurs. Parks’ algorithm considers all

channels to which one or more blocked processes are writing. Of these, the algorithm increases

the capacity of the smallest full channel by any amount. If this increase does not relieve the

deadlock, the algorithm repeats. It is interesting to note that if the smallest full channel wasn’t

that one whose capacity should have been increased, its capacity will get increased until it is

no longer the smallest channel or until it is no longer full. Thus, Parks’ algorithm does not

necessarily find the most optimal set of channel capacities that avoids global deadlock. The

algorithm only finds a set of bounded channel capacities when such bounds exist in a system.

3) Geillen & Basten: Parks’ algorithm activates only when a PN system reaches global

deadlock. However, not all artificial deadlocks result in global deadlock. For example, consider

figure 1. Suppose process C only reads from B just once, and then continuously reads from

process A. Also assume that processes A & B attempt to write an infinite stream of tokens to all

output ports. Under Kahn’s model, processes C & D will receive an infinite stream of tokens.

However, under Parks’ algorithm, the B-C channel will fill up with tokens but it will never cause

a global deadlock. Furthermore, process D will only see a finite stream of tokens. Process B

will only fire a finite number of times before blocking forever. One definition for ‘determinism’

is that at most one behavior is possible for a given situation. One may argue the determinacy of

April 2, 2004 DRAFT

4

Fig. 1. Process network that does not result in global deadlock

Parks’ algorithm compromises the determinacy of Kahn’s model. This follows since there exists

two possible behaviors (independent of time) for the stream of tokens traveling toward D.

Parks algorithm also fails to produce complete output if the system is composed of two disjoint

computations. For example, if the PN graph is composed of two disjoint chains, then deadlock

of one chain cannot cause deadlock in the other. Geilen and Basten present a different algorithm

[5] for deadlock resolution. Their algorithm is very similar to that of Parks, with one main

alteration. They increase the capacity of the smallest channel that is locally deadlocked. They

also guarantee their algorithm will find a set of bounded channel capacities when such bounds

exist. In terms of the counterexample shown against Parks’ algorithm, it could be said that Parks

prefers an incomplete & bounded execution over Geilen & Basten’s complete but unbounded

execution. They also show that no algorithm can guarantee a completeand bounded execution

for all computations.

B. Problems in Distribution

However, distributing the process network model is not trivial. All of the authors above assume

that two processes in a channel have identical views of their channel. That is to say, when a

producer places a token in a channel, the consumer knows about it on the next examination

of the channel. A similar assumption holds for when a consumer consumes a token. For a

PN implementation on a single workstation, this is trivially achievable with the use of shared

memory. However, the implementation of process networks on multiple networked workstations

makes matters much more complicated. All processes could be blocked on reads or writes, but

this would not imply deadlock if there were any messages in transit on any channel. Kahn’s

DRAFT April 2, 2004

5

‘channel’ is not really a channel but a shared-memory queue. The difference between his channel

and the real world is due to the effects of latency combined with the lack of a global clock.

Furthermore, even load balancing, which an operating system automatically performs on a

single-workstation, becomes non-trivial in the distributed case. A single workstation has to

eventually give execution time to all running applications. However, this does not hold for a

multiple-workstation setup. Here, there arises the question of how to partition the set of all

applications across the multiple workstations. This is inherently a difficult problem. Things

become worse in heterogeneous environments as one also has to consider the relative processing

capabilities of all workstations and also the capacity of the interconnecting communication links.

C. Distributed Systems

Although a discussion of process networks has been completed, the goal of this paper is a

distributedprocess network implementation. As mentioned in the previous section, the notion of

a ‘channel’ becomes more complicated. Fortunately, research in the field of Distributed Systems

provides some solutions. In distributed systems, there is no global clock, no shared memory, and

non-instantaneous communication – just as in a distributed process network.

1) Distributed Deadlock Detection:Deadlock detection is a problem in regular PN imple-

mentations and is even a tougher problem due to the characteristics of the ‘channel’ mentioned.

Fortunately, researchers in the field of Distributed Systems have come up with a variety of

deadlock detection algorithms. Some algorithms require a centralized knowledge of the whole

system; others do not. One centralized solution is to construct a wait-for-graph of the entire

system, and determine if there are any cycles in it. This could be well suited for detecting

deadlock on a single workstation, where shared memory exists. However, this is not a particularly

good solution for a distributed system with a large number of nodes. One problem is this

algorithm may put great stress (caused by a large number of messages) on the communication

link between the central node and the rest of the network. In 1984, Mitchell presented an elegant

algorithm [6] for distributed deadlock detection. An advantage to this algorithm is that it does

not require a node in a system to have complete knowledge of the whole system. Each node

only communicates with its neighbors. Furthermore, each node does not store information about

the entire system. The algorithm is as follows. Every node has a public and private label; both

are non-decreasing. Additionally, no two nodes ever have the same private label. When node

April 2, 2004 DRAFT

6

x begins to wait on nodey, nodex updates its the public label to bemax(x, y) + 1. When a

node discovers that the node it is waiting on has a larger public label than its own, it replaces

the value of its public label with the larger one. This algorithm has the effect of circulating

successively larger public labels in the reverse order of the corresponding wait-for graph. If a

deadlock truly exists, then a node will eventually see its own public label on the process for

which it waits. This algorithm also has the nice property that exactly one node will detect a

deadlock. This property is important for deadlock resolution in process networks, as it helps to

ensure that exactly one channel’s capacity is increased. In addition, it is trivial to modify this

algorithm so that upon detection of deadlock would reveal the smallest channel capacity.

2) Distributed Mutual Exclusion:Another problem in Distributed Systems is distributed

mutual exclusion. This is also a relevant problem for the distributed process network model.

Suppose it is desirable for every server to maintain a list of all servers in the network. These

lists would be beneficial for implementing load balancing, as it would be undesirable if a load

balancing algorithm attempted to relocate a process to a nonexistent server. However, additions

and deletions must occur in a controlled manner. Another scenario is the problem of a newly

instantiated process on a remote server attempting to connect to a process on a server that is

pending removal/suspension. A distributed mutual exclusion algorithm could allow the user’s

server to effectively command the other servers to ‘not touch anything ’until the user’s action

completed. An efficient algorithm is given by [7]. If one arrangesn servers in a tree structure,

mutual exclusion is achievable with a latencyO(log(n)). In this algorithm, each node remembers

which immediate neighbor leads to the node has the privilege. The author names this variable

HOLDER. In this algorithm, having the privilege means having the right to be in the critical

section. Each node also keeps a request queue, however the size of this queue is limited to1+n,

wheren represents the number of neighbors of a node. Like the HOLDER value, the request

queue only keeps a list of the immediate neighbors that requested privilege. At any time, the

series of the HOLDER values at each node will point to the privileged node. In a similar way,

when a node has made a request to enter the critical section, the heads of the request queues

will form a path that points to the requesting node. For N nodes in a balanced tree structure, the

message complexity of this algorithm is O(log N). Raymond also points out that under heavy

demand for the critical section, the performance of this algorithm actually improves to four

messages per critical section entry (independent of the number of nodes)! Clearly, this algorithm

DRAFT April 2, 2004

7

should perform well for managing modifications to the structure or underlying server pool of a

distributed process network.

IV. EXISTING IMPLEMENTATIONS

After presenting background on process networks and distributed systems algorithms, we will

examine characteristics of existing process network implementations (both distributed and non-

distributed).

A few known non-distributed process network implementations are described in [2], [8], and

[9]. Only the later two implement deadlock detection. More specifically, they both detect global

deadlocks. Both implementations map processes onto threads and use a dedicated thread for

deadlock detection. Essentially, they both rely on the shared memory in which threads reside.

Thus, techniques used to detect deadlocks in existing non-distributed process network models

are not applicable toward a distributed implementation.

In terms of distributed process networks, some implementations are covered in [10], [11], and

[12]. These three implementations seem to be the only ones that exist. None detect deadlocks

and none support dynamic process migration. Thus, an original contribution of this project will

be a DPN framework that provides both.

Plans for the implementation part of this project are as follows:

V. I MPLEMENTATION PLAN

The implementation of this project will consist of a distributed process network framework,

written in C++ or Java. Processes will communicate over the standard TCP/IP protocol. In

addition, the framework will implement deadlock detection using a distributed deadlock algorithm

similar to that discussed in this paper. The mutual exclusion algorithm discussed in this paper

will regulate changes to the server pool. The deliverables of this project will include a high-

performance DPN framework that implements distributed deadlock detection. Such a framework

will also be compatible with implementing other capabilities described in this paper.

VI. CONCLUSION

In conclusion, the process network model is well suited for high performance applications. In

today’s world, distributing the PN model onto multiple workstations makes sense in terms of cost

April 2, 2004 DRAFT

8

and performance. However, distributing the model is not trivial. Fortunately some algorithms

developed for generalized distributed systems can be applied and provide good solutions to

distribution-specific problems. This allows the creation of a high-performance distributed process

network.

REFERENCES

[1] G. Kahn, “The semantics of a simple language for parallel programming,”Information Processing, pp. 471–475, 1974.

[2] G. Allen and B. Evans, “Real-time sonar beamforming on workstations using process networks and POSIX threads,” in

IEEE Trans. Signal Processing, Mar. 2000, pp. 921–926.

[3] J. T. Buck, “Scheduling dynamic dataflow graphs with bounded memory using the token flow model,” Ph.D. dissertation,

University of California at Berkeley, 1993. [Online]. Available: citeseer.ist.psu.edu/buck93scheduling.html

[4] T. Parks, “Bounded scheduling of process networks,” Ph.D. dissertation, University of California at Berkeley, 1995.

[Online]. Available: citeseer.ist.psu.edu/parks95bounded.html

[5] M. Geilen and T. Basten, “Requirements on the execution of kahn process networks,” inProgramming Languages and

Systems, 12th European Symposium on Programming, vol. 2618. Berlin, Germany: Springer-Verlag, 2003. [Online].

Available: http://www.ics.ele.tue.nl/ mgeilen/publications/esop03.pdf

[6] D. P. Mitchell and M. J. Merritt, “A distributed algorithmn for deadlock detection and resolution,” inACM Symposium on

Princples of Distributed Computing. ACM, 1984, pp. 282 – 284.

[7] K. Raymond, “A tree-based algorithm for distributed mutual exclusion,” inIEEE Trans. Comput., vol. 7, no. 1, Feb. 1989,

pp. 61–77.

[8] M. Goel, “Process networks in Ptolemy II,” Master’s thesis, University of California at Berkeley, Dec. 1998. [Online].

Available: http://ptolemy.eecs.berkeley.edu/publications/papers/98/PNinPtolemyII/

[9] R. Stevens, M. Wan, P. Laramie, T. Parks, and E. Lee, “Implementation of process networks in Java,” Tech. Rep., July

1997, draft. [Online]. Available: http://www.ait.nrl.navy.mil/pgmt/PNpaper.pdf

[10] D. W. Julien Vayssìere and A. Wendelborn, “Distributed process networks,” University of Adelaide, Austrailia, Tech.

Rep. TR 99-03, Oct. 1999, draft. [Online]. Available: http://www.cs.adelaide.edu.au/ dpn/documents/tr9904.ps

[11] A. Amar, P. Boulet, J.-L. Dekeyser, and F. Theeuwen, “Distributed process networks using half FIFO queues in CORBA,”

INRIA, Tech. Rep. RR-4765, Mar. 2003. [Online]. Available: http://www.inria.fr/rrrt/rr-4765.html

[12] T. Parks and D. Roberts, “Distributed process networks in Java,” presented at the International Workshop on Java for

Parallel and Distributed Computing, Nice, France, Apr. 2003.

DRAFT April 2, 2004

