Modeling of Humanoid and Multi-agent System

EE 382C.9 Embedded Software Systems Spring 2004
Final Presentation by
Yuklai Suen
May 5th, 2004
Objective
- develop a network deployment algorithm for sensor network Humanoid Multi-agent System (HMAS)
- Mobile ad hoc network (MANET)
- Sensor network (SN)

Problem
- expensive to achieve energy efficiency (NP-complete) [Li 2004]

Museum problem [LaMarca et al 2002]
- surveillance SN to cover the entire museum
Contributions

- Proposed a genetic algorithm (GA) for network deployment considering power matrices
 - artificial intelligence mapping
 - power

- Simulated and gathered statistical data of the GA algorithm

- What is GA?
 - a mimic of Darwin’s Evolution Theory
Network Hierarchy
Algorithm

- Randomization
 - direction vectors (1 for each node)
- Collect sensor vector after duration t
 - receiver power matrices (rpm)
 - coverage information (cov)
- Generate a fitness value
 - current rpm
 - previous cov
- Recombine direction vectors
- Mutate the direction vector
- Termination
Network Hierarchy

- **Cluster 1**
 - Node 1
 - Node 2
 - Base station

- **Cluster 2**
 - Node 3
 - Node 4
 - Node 5
Network Transform

Cluster 1

Node 1

Node 2

Node 3

Node 4

Cluster 2

Node 5

Base station
Modification to the algorithm

- Global area coverage monitored by the global base station
 - sensor vector of boundary nodes of each cluster

- Local optima is avoided by altering the assignment of the base station in each cluster, and re-clustering the nodes
 - base station set
Simulation

Network Simulator Version 2

random movement trace

GA movement trace
Simulation Result

- **Specification**
 - **Hierarchy**
 - 2 domains, 3 clusters
 - 2 base stations, 11 mobile nodes
 - $t_m = 60s$
 - **Wireless**
 - 11Mbps, 20us delay
 - packet size: 512Kb
 - Mac Layer protocol: IEEE 802.11
 - constant bit rate source

- **Result**
 - **Packet Loss**
 - 0.05% without GA
 - 0.02% with GA
 - **Energy**
 - 0.1W model
 - N/A without GA
 - ~37.2 J with GA
Simulation Result

Energy Consumption vs Number of Mobile Nodes

Energy Consumption per Node (J)

Number of Mobile Nodes

mobility: 0.5J/m
wireless: 0.1W
Conclusion

- GA improved deployment performance in energy and time
- From ultra-wide band to GA network deployment
- Potentials
Algorithm II

Deployment (MANET)

i. random direction generation for the nodes: direction_vector and base_station_set

ii. recombine direction_vector of each node

iii. after t_m each end node sends a sensor vector to its router

 sensor_vector = \{id, coverage[t], power[t][]\}

 power[]: receiver power vector of neighboring nodes
 t: current time stamp

iv. the router sorts the sensor_vector by a fitness function

 fitness(coverage[t], power[t][], coverage[t-t_m], power[t-t_m][])

 that returns

 power[t+t_m][] and coverage[t+t_m]

 to decide the next direction of movement, so that:

 a. $power_i < power[t+t_m][r] < power[t][r] < power[t-t_m][r]$ where $r = id(router)$

 b. $power[t+t_m][i] < power[t][i] < power[t-t_m][i]$ for all $i \neq r$

 c. coverage[t+t_m] < coverage[t] < coverage[t-t_m]

 $power_r$: lowest receiver power defined by network

 power[t+t_m][i] and coverage[t+t_m]: expected next receiver power and next coverage

v. if $t_m = 0$, return

 if (power[t+t_m] == power, and power[t+t_m][i] ~ 0 for all i)

 mutate direction_vector and base_station_set and decrease t_m by t_{delta}

 else repeat ii.