
BENCHMARKING CODE GENERATION METHODOLOGIES FOR
PROGRAMMABLE DIGITAL SIGNAL PROCESSORS

Ashutosh K. Kulkarni, Aditya Dube

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712, USA

ABSTRACT

We evaluate rapid prototyping tools and compilers as code
generation methodologies for programmable digital signal
processors (DSPs). Code generated by compilers and rapid
prototyping tools have been reported as significantly less
efficient in memory usage and execution time versus
assembly language code written by expert programmers. As
the complexity of the system increases, however, the scale
tips in favor of the automated code generation techniques. We
quantify when this trade-off occurs by isolating the effects of
(1) compiler inefficiencies and (2) automatic scheduling
algorithms.

1. INTRODUCTION

For nearly two decades, programmable digital signal
processors (DSPs) have performed computation and data
intensive tasks in real-time with limited on-chip memory. In
order to meet real-time constraints, programmers have
traditionally written and optimized DSP assembly language
code by hand. Sometimes, less time critical parts can be
implemented in a higher-level language such as C. As
systems become more complex, two alternatives become
viable: (1) write the entire application in a higher-level
language, and (2) use a rapid prototyping tool to generate
software for the application.

We evaluate these two alternative code generation
methodologies by isolating and measuring the factors that
lead to implementation overhead. We perform the evaluation
on the Motorola 56002 DSP using the GNU-based Motorola
KCCA56 C compiler (Version 1.26; May 22, 1996) and the
automated C and 56000 code generators in the UC Berkeley
Ptolemy design environment (Version 0.7; June 13, 1997).

2. BACKGROUND

DSPs incorporate special architectural features such as bit-
reversed addressing for FFT routines, modulo addressing for
circular buffers, concurrent access to data and program
memories for high throughput, and hardware looping for

digital filters [1]. Many compilers have been unable to take
full advantage of these features. For example, compilers for
DSPs with two data memory banks show a bias of as much as
70% toward one data bank. Compilers have also been
inefficient in exploiting parallelism in memory access and
address calculations. Hence, code generated by compilers
often suffers from large run time overhead.

Ptolemy, a rapid prototyping tool, automatically generates
code in C (CGC domain) and in the Motorola 56000
assembly language (CG56 domain). These domains obey
Synchronous Dataflow (SDF) semantics [5] which facilitates
static scheduling and code optimization. Code generation
occurs in two phases: (1) scheduling, in which the functional
operations used in specifying the system are scheduled, and
(2) synthesis, in which the code segments for the functional
operations are stitched together for execution on the target
processor [2]. Architecture-specific features of the target can
be leveraged during the synthesis phase.

3. BENCHMARKING
METHODOLOGIES

We measured the cost of four implementation techniques to
evaluate the relative merits of code generation methodologies.
Each of the benchmark programs were coded by

• programming manually in 56002 Assembly Language,
• compiling hand-written C code using the Motorola

KCCA56 compiler,
• using Ptolemy’s CG56 domain for generating 56002

assembly language code, and
• using the KCCA56 compiler on a C implementation

generated by Ptolemy’s CGC Domain.

We isolated the effects of (1) compiler inefficiencies and (2)
automatic scheduling algorithms. Comparing assembly
language and C implementations exposes compiler
deficiencies, whereas comparing hand-written code with
Ptolemy generated code emphasizes differences in manual vs.
automated scheduling algorithms. For example, by comparing
the results for the same application given by the Ptolemy
CG56 domain vs. the Ptolemy CGC domain plus the
KCCA56 C compiler with the same scheduler, we isolate the
effects of the KCCA56 C compiler.

3.1 Benchmarking with Kernels

We evaluated three kernels as shown in Tables 1-3: (1) 5-tap
IIR filter, (2) 256-point complex FFT, and (3) Goertzel's DFT
Algorithm. We observe a substantial increase in memory
usage with compilers because of the additional layer of
abstraction between the software developer and the
application. Data memory overhead varied from 0% to 66%
with an average value near 27%. The average program
memory overhead of 41% increased with the complexity of
the implemented kernel. Programs generated by hand or
Ptolemy do not differ greatly in size or execution time. Also
the code generated by Ptolemy does not show a bias towards
one data memory bank versus the other. This is to be
expected as the code for kernels in Ptolemy is drawn from
optimized libraries which do not allow such a bias to exist.
Some overhead is inevitable with compilers. When we use
kernels for benchmarking, Ptolemy fares much better because
of the optimized code from its libraries. The power of
Ptolemy’s optimizing scheduler is not utilized as these
kernels consist of only a few functions.

Program
Memory

X
Memory

Y
Memory

Exec.
Time

Hand
Coding in
Assembly

43 7 8 517

Ptolemy
CG56

49 7 8 561

Hand
Coding in
C

59 11 11 1127

Ptolemy
CGC

57 11 12 963

Table 1. Memory usage and Execution times for IIR Filter
kernel

Program
Memory

X
Memory

Y
Memory

Exec.
Time

Hand
Coding in
Assembly

130 67 60 29172

Ptolemy
CG56

136 67 65 25661

Hand
Coding in
C

178 69 77 30927

Ptolemy
CGC

193 68 69 32631

Table 2. Memory usage and Execution times for 256 point
complex FFT kernel

Program
Memory

X
Memory

Y
Memory

Exec.
Time

Hand
Coding in
Assembly

67 41 3 17341

Ptolemy
CG56

67 37 3 17283

Hand
Coding in
C

111 39 5 20123

Ptolemy
CGC

102 43 3 19487

Table 3. Memory usage and Execution times for Goertzel’s
DFT kernel

3.2 Benchmarking with Applications

Using stand-alone applications is more realistic for
benchmarking methodologies than using kernels. We have
chosen three applications to represent the complexity and
style of typical DSP applications. These were demonstrations
in Ptolemy which follow Synchronous Dataflow semantics:

• IIR DEMO (Two ways of implementing an IIR filter) -
Figure 1 and Table 4.

• CD-DAT converter (Multirate application, 44.1kHz
(48kHz) - Figure 2 and Table 5.

• Dual-Tone Multiple Frequency (DTMF) touchtone
Codec (Communications application) - Figure 3 and
Table 6.

Figure 1. Ptolemy schematic for IIR Demo

We found that compilers cause an explosion of program
memory size between 40% and 119%. The low figure of
40%, which is for the CD-DAT stand-alone C implementation
is quite deceptive. In C code, the FIR filter implements
polyphase resampling. In the CG56 domain, the FIR filter can

perform either interpolation or decimation, so an additional
Downsampling star is needed.

Figure 2. Ptolemy schematic for CD-to-DAT Converter

Figure 3. Ptolemy schematic for DTMF Codec

Program
Memory

X
Memory

Y
Memory

Exec.
Time

Hand
Coding in
Assembly

86 20 30 41946

Ptolemy
CG56

88 20 33 42031

Hand
Coding in
C

143 21 31 67132

Ptolemy
CGC

152 21 42 69246

Table 4. IIR Demo - Memory usage and Execution times

We found that the KCCA compiler efficiently utilizes 56002
addressing modes, especially the bit-reversed addressing

mode (complex FFT in the IIR Demo). For IIR filters, we
observed a repeated exploitation of hardware looping. Our
experiments agreed with [8] that the better DSP compilers
handle data and variables efficiently with the worst case
increase in data memory size being about 9%.

Program
Memory

X
Memory

Y
Memory

Exec.
Time

Ptolemy
CG56

413 456 283 295069

Ptolemy
CGC

586 468 280 381076

Hand
Coding
in C

687 398 324 463004

Table 5. CD-to-DAT Converter Memory usage and
Execution times

Program
Memory

X
Memory

Y
Memory

Exec.
Time

Ptolemy
CG56

976 3486 46 2195195

Ptolemy
CGC

2146 3824 58 5431957

Hand
Coding
in C

40753 3392 54 ***

*** The large size of the code generated made it impossible
to execute the program on our system because of program
memory limitations.

Table 6. DTMF Codec Memory usage and Execution times

Ptolemy includes libraries of highly optimized code modules
which its code generation domains ‘stitch together’ according
to a schedule. The scheduler possesses inherent knowledge of
the communications among the subsystems allowing Ptolemy
to better utilize scarce on-chip memory. The distribution of
data memory is more equitable in the Ptolemy CG56
implementations of the IIR DEMO and CD-to-DAT programs
than in the stand-alone C implementations. With increasing
complexity, scheduling assumes greater importance. An
intelligent scheduling heuristic (such as the one in Ptolemy
that jointly minimizes program memory and data memory
size) is likely find a far better schedule and code in complex
cases. This is why the CGC implementation in the CD-to-
DAT program fares better than the stand-alone C code.
Ptolemy-generated 56000 assembly language programs
outperform compiled hand-coded C implementations in
program memory usage and execution time, and are
comparable in data memory usage. The gap widens as

complexity increases. At some point between the complexity
of the IIR filtering and CD-DAT converter applications,
Ptolemy-generated C programs begin to outperform hand-
coded C implementations in the same way. The increase of
complexity from a CD-DAT converter to a DTMF codec
causes an increase by an order of magnitude of the efficiency
of Ptolemy-generated C programs over the hand-coded C
implementations. Although not shown, we found that for the
IIR filtering demonstrations that Ptolemy-generated assembly
language programs were only 2% worse in performance vs.
hand-coded assembly implementations.

4. CONCLUSIONS

As far as which code generation methodology to use to create
the most efficient implementations in a DSP assembly
language, we draw the following conclusions:

• When the choice is between writing C code manually for
compilation and using a synthesis tool to generate
assembly language directly, the synthesis tool should be
chosen.

• A key use of a C compiler is to complement a tool that
synthesizes assembly language programs by generating
efficient implementation of kernels in assembly
language when they do not exist.

• When the choice is between writing assembly language
code manually and using a synthesis tool to generate
assembly language, the synthesis tool should be chosen
for applications of complexity slightly greater than a
DTMF codec.

Placing the responsibility of finding a schedule for a
complex, multirate application on the programmer can often
lead to extremely inefficient implementations. Intelligent
schedulers provided in a tool like Ptolemy ensure that the
code produced will be near optimal in program and data
memory size. Based on our results, an ideal environment for
software development on programmable DSPs would use a
rapid prototyping tool at the system level (e.g. a dataflow
graph in Ptolemy) and a highly optimized compiler (e.g., the
KCCA56 compiler) at a finer level of granularity to extend
the libraries provided by the tool as the better compilers for
DSPs add very little overhead. When the overhead is not
acceptable, hand coding would be used to add time critical
functions to the libraries of the tool.

5. REFERENCES

[1] M. A. R. Saghir, P. Chow and C. G. Lee, “Application-
Driven Design of DSP Architectures and Compilers,” Proc.
of IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, vol. 2, pp. 437-440, Apr. 1994.
[2] J. L Pino, “Software Synthesis for Single-Processor DSP
Systems using Ptolemy,” Master’s Report, Department of
Electrical Engineering and Computer Science, University of
California at Berkeley, Berkeley, CA 94720, 1994.

[3] S. S. Bhattacharya and E. A. Lee, “Memory management
for Dataflow Programming of Multirate Signal Processing
Algorithms,” IEEE Trans. on Signal Processing, vol, 42, no.
5, pp. 1190-1201, May 1994.
[4] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of
Synchronous Dataflow Programs for Digital Signal
Processing,” IEEE Trans. on Computers, vol. 12, no. 8, pp.
971-989, Jan. 1987.
[5] S. S. Bhattacharya, P. K. Murthy and E. A. Lee, Software
Synthesis from Dataflow Graphs, Kluwer Academic Press,
1996.
[6] J. L. Pino, S. Ha, E. A. Lee and J. T. Buck, “Software
Synthesis for DSP using Ptolemy,” Journal on VLSI Signal
Processing, vol. 9, no. 1, pp. 7-21, Jan. 1995.
[7] S. S. Bhattacharya, J. T. Buck, S. Ha and E. A. Lee,
“Generating Compact Code from Dataflow Specifications of
Multirate Signal Processing Algorithms,” IEEE Trans. on
Circuits and Systems I: Fundamental Theory and
Applications, vol. 42, no. 3, pp. 138-150, Mar. 1995
[8] P. Lapsley, J. Bier, A. Shoham and E. A. Lee, DSP
Processor Fundamentals - Architectures and Features,
Berkeley Design Technology, Inc., 1996.

