
Software Synthesis from Dataflow Models for
G and LabVIEW

Hugo A. Andrade
Scott Kovner

Department of Electrical and Computer Engineering
University of Texas at Austin

Austin, TX 78712
andrade@mail.utexas.edu
kovner@mail.utexas.edu

Embedded System Software (EE382C)

May 8th, 1998

Abstract
The “G” programming language, as implemented in the National Instruments product “LabVIEW”, allows the
user to describe a program with a dataflow representation. Our goal is to apply the techniques and concepts of the
current dataflow research towards the adaptation of G as an embedded software development tool. LabVIEW is
dominant in the instrumentation industry. As the instrumentation industry makes use of more embedded systems,
it becomes practical to consider extending LabVIEW’s and G’s functionality to target embedded systems.
Formally, G is a homogeneous, multidimensional, dynamic dataflow language. G uses “structured dataflow”
semantics to specify high level concepts (e.g. loops, conditional control flow, etc.) instead of using low level actors
and feedback. We examine G in the context of other models of computation, such as cyclostatic dataflow,
dynamic dataflow, and process networks. In particular, we look for what we can learn from these models to apply
to G.
G has useful subsets that can be statically or quasi-statically scheduled. Cyclostatic analysis can be used on
certain combinations of loops and case structures. Furthermore, as a dataflow language, G already describes the
parallelism in a program. Parallelism can be further exploited by allowing overlapping execution of loops, and
augmenting the auto-indexing feature of G with array auto-subsetting. It would also be useful in a G program to
describe when or how often a VI should execute relative to some global clock.  Finally, a view manager could help
visualize a G program as having a different model of computation (e.g. finite state machines) for developers that
are used to a different model.
The popular G programming language is already directly applicable to embedded system development. These
additions would make G and LabVIEW a more productive environment for the development of dataflow
programs for embedded systems, where small, fast, and determinate executions are key.



1

1 Introduction

The use of dataflow programming tools for system prototyping and development predates some of the

recent work in compiling and scheduling dataflow graphs. For example, one popular dataflow language tool

called LabVIEW was released in 1986, but much of the work on targeting general purpose computer

architectures with dataflow has been published during the 1990’s. In this literature survey, we will cover

some of these recent developments and discuss how LabVIEW may be augmented to take advantage of

these new developments.

2 LabVIEWand G Background

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a graphical application development

environment (ADE) developed by National Instruments Corporation for the Data Acquisition (DAQ), Test

and Measurement (T&M) and the Industrial Automation (IA) markets.  It was originally developed in the

early 1980’s and is currently in its fifth major revision.  It is composed of several sub-tools targeted at

making the development and prototyping of instrumentation applications very simple and efficient.  One of

its most important components is a compiler for the G programming language.

Figure 1 LabVIEW Diagram and Front Panel

G is a dataflow language that due to its easy to use and intuitive graphical user interface and programmatic

syntax has been very well accepted in the instrumentation industry, especially by scientists and engineers

that are familiar with programming concepts but are not professional software developers but rather domain

experts. Though it is easy to use and flexible, it is built on an elegant and practical model of computation.

The idea was to provide an intuitive  “hardware” view to the programmer, and since most scientists and

engineers understood the concept of block diagrams, it became the primary syntactical element in



2

LabVIEW.  The semantics are expressed in a structured dataflow manner, which combines constructs

from imperative and functional languages.  The block diagram consists of virtual instruments or “VI’s”

(actors) and unidirectional wires (edges) that connect the VI’s as shown on the left in Figure 1.  VI’s are

either primitives built into G or sub-VI’s written in the G language.

The user interface is presented through a “front panel” that provides “controls” and “indicators” through

which the user sends and receives information, respectively, as shown on the right in Figure 1.

3 Motivation

Over the years, LabVIEW and G have become dominant in the T&M industry, with many thousands of

engineers and scientists using them to develop new applications and libraries that can be used by other

developers.  In addition to the users, there is a very extensive direct and third-party training and support

network.  In recent years, a new product from National Instruments, BridgeVIEW, has targeted G as a

programming language for the IA industry, and has extended the user and software base.

As the focus turns now to embedded instrumentation systems, it is desirable to be able to re-use that

existing infrastructure.  The idea is to integrate and adapt to the language as elegantly as possible

constructs and paradigm that are used in this new domain, while maintaining backward compatibility with

the existing base.  This movement is not unlike others in the industry where an industry standard (e.g.

Java) has been enhanced to target more domains (e.g. hardware) to leverage its popularity.

4 Goals of the Project

The main goal of this project is to review the models of computation and technologies in the latest work

done on methods of software synthesis from dataflow graphs, and to apply them towards the adaptation of

G as an embedded software development tool.  So far LabVIEW has been targeted at powerful PC’s,

where the structured dataflow, described in Section 6, has been useful to develop high-level

instrumentation applications.  As we target more specialized processors, distributed systems, real-time

systems, and even programmable logic, we need to evaluate the extensib ility of G to these domains.

In this discussion, we provide a formal description of the G programming language (Section 5). We identify

subsets of G that can be statically scheduled (Section 6). We present features available in other languages

that could be used to extend G  (Section 7). Finally, we discuss the combination and integration of G with

other models of computational  (Section 8).



3

5 Formal Description of LabVIEW

Before we can extend or improve G using the theoretical techniques being studied today, it is important to

characterize G [NI98] using the formal terminology of dataflow languages [BML96, PP97].

5.1 Categorizing G

G is a homogeneous, dynamic, multidimensional dataflow language.

• Homogeneous - G actors produce and consume a single token for each edge in the graph.

• Dynamic - G includes constructs that allow portions of the graph to be conditionally executed based on

the input data, so no data-independent static schedule can be created.

• Multidimensional - G has full support for multidimensional arrays. Loop constructs in G can be used to

combine individual tokens into arrays of tokens, or to separate array elements back into individual

tokens. This is known as “auto-indexing”.

5.2 Other Properties of G

• Turing Complete: It has been demonstrated that if you can implement a Turing machine in a language,

that language is Turing complete[LP81].  A Turing machine has been implemented in LabVIEW, so G

satisfies this condition.

•  Bounded communication queues: Although the data structures contained in a token can be arbitrarily

large, there can only be one token on any wire at any time.

•  Structured dataflow: Instead of switch, select, and feedback loops, G has programming structures to

control program flow. There is a structured case statement that will select one subgraph to execute

based on a single input. There are while and for loops in which the user can specify feedback from one

iteration to the next. (This is the only feedback allowed in G.)

•  Composability: Because load balancing is not an issue in scheduling homogenous dataflow, G

diagrams can be clustered into sub-diagrams without affecting the correctness of the diagram. The only

exception is that since G only allows feedback in a loop structure, the partitioning cannot be allowed to

create a feedback loop. Furthermore, a node in G can be a VI written entirely in G.  The sub-VI can be

a binary compiled from within LabVIEW, which allows libraries to be distributed without source. G

does not need to know the internal implementation of a sub-VI to be able to schedule it.

• Explicit coupling: G supports non-dataflow communications directly in the diagram. Global variables,

local variables, and synchronization primitives can be used to explicitly send data or control scheduling



4

in a VI. This reduces the need to have hidden communication between nodes that might affect the

scheduling algorithm.

6 Static Scheduling in G

Current run-time implementations of G employ a dynamic scheduler to control the firing of each VI in a

diagram.  Embedded systems often do not require such scheduling, and cannot afford the overhead of

such a scheduler in the run-time environment.  In order to target G programs to embedded processor code

or a hardware description language, it is necessary to find subsets of G that can be statically scheduled

[LH92, LH94, BML96].

6.1 Synchronous VI’s and Loops

Recall that the actors on a dataflow graph are atomic, while the actors in a process network represent self

scheduled processes that communicate via the queues (arcs) between the actors [LP95]. A program written

in the G language describes a simple dataflow process network, rather than just a dynamic dataflow

program. Specifically, VI’s in G complete either synchronously or asynchronously. VI’s that complete

asynchronously cannot be scheduled statically since the static scheduler cannot know when the VI will

complete. However, the synchronous VI’s resemble SDF actors in Ptolemy, and can be statically

scheduled.

A G compiler should analyze loop constructs to determine if they can be statically scheduled. A “for” loop

with a constant loop count can be statically scheduled. On the other hand, “for” loops with data-dependent

loop counts and “while” loops that have a data dependent termination condition can not be statically

scheduled. This becomes clear if you notice that a loop with a count of either zero or one is equivalent to an

if-then statement, which can be used within another loop in G to implement a Turing machine, which cannot

be statically scheduled. Others have proposed statistical methods for statically scheduling loops [HL95].

6.2 Quasi-static Scheduling

In traditional BDF, there are nodes which demultiplex data (“forks”) and nodes which multiplex data (“join”).

The fork and the join can be placed anywhere in the diagram. It is the responsibility of the BDF scheduler to

find finite complete cycles in the graph so that a quasi-static schedule may be generated. Unfortunately,

since BDF is Turing-complete, the problem of finding finite complete cycles is undecidable [BML96].

G, on the other hand, uses a “case” structure instead of “fork” and “join” nodes. A case structure describes

alternate VI frames that must all produce the same number and type of tokens at the output of the

structure. With such a structure, no analysis is necessary to find a quasi-static schedule; each frame of VI’s



5

can be statically scheduled and represents one data dependent alternative in the quasi-static schedule.

Therefore, G case structures provide the power of boolean decisions in the diagram without introducing the

scheduler complexity of BDF.

6.3 Cyclostatic Dataflow

In a G diagram, case structures are often used inside of loop structures. Sometimes, the iteration count is

used as the condition for the case structure. In those instances, the loop and case structures represent a

cyclical firing of the frames inside the case structure. This corresponds to a cyclostatic dataflow program.

Such a diagram can be statically scheduled by transforming it into a cyclostatic graph and applying the

appropriate scheduling algorithms for cyclostatic dataflow [PPL95, BEL96].

0

3

4

5

6

1 0

2

0  3  

Figure 2a Cyclo-static G Diagram Figure 2b CSDF Representation

7 Extending G

In this section we present three extensions to the G language based the concepts found in the

environments studied: multi-dimensional dataflow, timed dataflow, and overlapping execution.

7.1 Multidimensional Dataflow

G tokens can be multi-dimensional arrays of any data type. Normally, a VI must be specifically written to

accept these arrays. G provides extra support for passing arrays into loop structures. The array can be

auto-indexed, which means that the ith element of the array is automatically passed into the ith iteration of

the loop. Furthermore, a loop with an unspecified loop count will automatically run for a number of iterations

equal to the size of the smallest auto-indexed array.

This feature could be extended to provide more of the power of multidimensional dataflow. For example,

instead of simply auto-indexing the array, a loop could be made to auto-subset the array. In other words, an

array of n elements should be able to pass into each iteration an array of m elements, and the loop should

execute n/m times. This would accommodate passing large arrays to VI’s that are written to handle specific

smaller sizes of data. For example, a two dimensional FFT could be implemented using a VI that operates



6

on 64 pixel by 64 pixel regions of the data. This feature becomes even more useful if the iterations are

allowed to be executed in parallel, as is suggested in Section 7.3 “Overlapping Execution”.

7.2 Timed Dataflow

The concept of having time information is not new to G.  It is available today in the form of timers and

delays, mainly in loops.  It is also available as a configuration option for many I/O libraries that do hardware

based timing.  Here we would like to introduce the concept of time at the firing level for each VI.  This will

be very useful in the overlapping execution described in the next sub-section.

We will do this by allowing tags on source VI’s that describe start times or periods.  This will allow the

scheduler and not the VI to control the notion of time in the system.  Using a global clock we can

precondition the triggering of a given VI.  If know the duration of the VI, or we can put bounds on it, we can

generate a pessimistic “pseudo-static” schedule, because we know that we will be able to iterate on a

timely manner.  Through the use of exceptions (error clusters in G) we can deal with the case where a VI

does not meet the schedule.  We can also deal with multi-rate flows by incorporate sub-structures, and

using the multi-dimensional characteristics described above to accumulate and pass the multiple data sets.

7.3 Overlapping Execution

The current G scheduler creates an artificial sequential dependence between iterations of a loop.  For

example, in the diagram in Figure 1., assuming that there were no shift-registers (data feedback), the

sequence and the AND VI cannot execute in parallel on different iterations; each firing needs to be explicitly

triggered by the re-execution of the loop.  As was seen in section 7.1, unrolling loops can help us achieve

multi-dimensional dataflow.  In this case it will allow us to achieve greater parallelism.

Overlapping execution need not be limited to loops. We can allow multiple firings of the same VI under any

circumstance.  Notice that we can still maintain the single element queue paradigm currently provided in G

by making the schedule demand driven. This would allow for a very intuitive description of pipelined

execution, which can be mapped to highly parallel execution environments, like FPGA’s.  In the case of

timed executions where we know the timer period is larger than the execution time, we can build a static

schedule and guarantee this demand driven overlapping execution, given that the dataflow allows it.

We can also provide queues that are larger than one element. In un-timed diagrams, this would allow us to

compensate for different rates of arrival for firing events. In this case, the scheduling would be data driven,

and overflow at the queues is possible.  A variation where the arrival of events is cyclical we can apply a

cyclic schedule that would allow us to predict the number of queue elements required.



7

8 Combining G with other Models of Computation

Even though providing a simple and consistent single model of computation is key to G, it is necessary to

be able to integrate G with other environments.  LabVIEW/G currently supports DLL calls, and can

control and be controlled over TCP/IP, DDE and Active Automation.  These provide an imperative model of

computation.  Here we show how LabVIEW/G can be integrated with other dataflow environments.

There are two approaches to integration. The first is by actually switching models of computation, and

providing interfaces to them, a la Ptolemy. The second one is to provide a different visualization level for

the same model of computation, such as FSM view manager that map and control G code to present a

FSM-like view to the developer, while keeping him or her in the G domain.

In the first approach, we integrate with Ptolemy, for example, by following the wormhole paradigm and

interface they have provided.  Ptolemy describes in great detail the interaction between different models of

computation.  G, with its original un-timed semantics, can be integrated in a similar manner to other

dataflow, and other domains can be integrated with it in a similar way that they were integrated with other

dataflow models of computation in Ptolemy.  The main issue is that each VI can execute indefinitely once

fired, so that integration with timed domain would be more complicated.  The concept of timed events

discussed in section 8.1 is useful in providing a time-reference for such integration.  In the case of regular

dataflow the integration is trivial.  LabVIEW can export the necessary entry points using a "VI server".

A second approach is to provide a view manager that allows developers to visualize a segment of G code

in a domain that is more intuitive to them.  An interesting case here is the FSM view.  G can already

implement FSM well through the use of a ‘case’ statement with an outer loop.  Parallel state machines are

depicted as parallel loops and interaction through globals, if needed.  We can build a view manager that

provides a more intuitive view of the FSM, i.e. a traditional Mealy or Moore diagram, with bubbles, arc, and

events.  The manager would then create and manage a FSM template instance.  The user would be able to

view and modify actions, and possibly the state variable assignment, but would allow the control to be

managed.  This viewer could be an add-on to the existing language, or can be built in as a structure.

9 Conclusion

The popular G programming language seems to be directly applicable to embedded system development.

Some aspects of G where work can be done are:

• Static Scheduling: In the existing form of the language, there are useful subsets that can be statically

scheduled. In particular, synchronous VI’s and certain types of loops can be statically schedules.



8

Furthermore, quasi-static schedules can be derived from the case structures, and cyclostatic analysis

can be used on certain combinations of loops and case structures.

• Exploiting Parallelism: As a dataflow language, G already describes the parallelism in a program.

Parallelism can be further exploited by allowing overlapping execution of loops, and augmenting the

auto-indexing feature of G with array auto-subsetting.

• Timed VI’s: It would be useful in a G program to describe when or how often a VI should execute

relative to some global clock. In current mechanisms for timing in G, the scheduler cannot use the

timing information. By tagging source VI’s with start information, we can allow the scheduler to

generate a real-time periodic schedule. We can also verify that a VI has completed execution by a user

specified deadline. Furthermore, multi-rate diagrams can be represented by a hierarchical structure

that communicates using arrays of data.

We feel that G and LabVIEW already provide a productive environment for the development of dataflow

programs.  Some of the enhancements proposed here would complement it well, especially in the area of

embedded systems, where small, fast, and determinate executions are key.  For implementation of such

systems, the homogenous, dynamic, timed, and parallelizable model we propose for G is very useful.

10 References
[BML96] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, Software Synthesis from Dataflow Graphs, Kluwer Academic

Publishers, ISBN 0-7923-9722-3, 1996

[BEL96] G. Bilsen, M. Engels, R. Lauwereins, “Cyclo-Static Dataflow,” IEEE Transactions on Signal Processing, vol. 44, no.

2, pp. 397-408, Feb. 1996.

[HL95] S. Ha, and E. A. Lee, “Compile-Time Scheduling of Dynamic Constructs in Dataflow Program Graphs,” IEEE

Transactions on Computers, vol. 46, no. 7, pp. 768-778, July 1997.

[LP81] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory of Computation, Chapter 4, Prentice-Hall, 1981.

[LP95] E. A. Lee, and T. M. Parks, “Dataflow Process Networks,” Proceedings of the IEEE, May 1995

[LH92] B. Lee, and A. R. Hurson, “A Hybrid Scheme for Processing Data Structures in a Dataflow Environment,” IEEE

Transactions on Parallel and Distributed Systems, vol. 3, no. 1, pp. 83-96, Jan. 1992.

[LH94] B. Lee, and A. R. Hurson, “Dataflow Architectures and Multithreading,” Computer, August 1994, pp. 27-39

[NI98] National Instruments, LabVIEW 5 Software Reference and User Manual, National Instruments, Feb. 1998.

[PP97] Ptolemy Project, The Almagest: A Manual for Ptolemy, Ptolemy Project

(http://ptolemy.eecs.berkeley.edu/papers/almagest/index.html), 1997.

 [PPL95] T. M. Parks, J. L. Pino, and E. A. Lee, “A Comparison of Synchronous and Cyclo-Static Dataflow,” Asilomar

Conference on Signals, Systems, and Computers, Oct. 1995.


