
Final Report

on

Dual-Tone Multiple Frequency (DTMF)

Detector Implementation

G�uner Arslan

for

EE382C

Embedded Software Systems

May 1998

Abstract

Dual-tone Multi-frequency (DTMF) signals are used in touch-tone telephones as well

as many other areas such as interactive control, telephone banking, and pager system. As

analog telephone lines are converted to digital, researchers became interested in digital

DTMF detectors.

There are many digital DTMF detecting algorithms, but most of them do not comply

with the related International Telecommunications Union (ITU) and Bellcore recommen-

dations or are not suitable for real-time implementation.

In this project, my primary aim was to implement the new DTMF algorithm proposed

by M. D. Felder, J. M. Mason, and B. L. Evans on a TMS320C50 digital signal processor for

24 channels. My design tool in this task was Ptolemy, to be more speci�c the C50 domain,

which caused several problems during the project. In order to overcome these problems,

I started to write a new target for the C50 domain which is named as SimC50 due to its

ability to run assembly codes on a simulator and display the results. Despite the fact that

current C50 targets generate code for TI TMS320C50 DSP Starter Kit (DSK), the new

target generates code for TI TMS320C50 Evaluation Module (EVM).

At the time this report was written all the tasks of the new target except getting the

results from the simulator part, were �nished. Additional work was needed to modify some

C50 stars because they were written for DSK only.

2

1 Introduction

Dual-tone multi-frequency (DTMF) is an international signaling standard for telephone digits.

These signals are used in touch-tone telephone call signaling as well as many other areas such as

interactive control applications, telephone banking, and pager systems.

A DTMF signal consists of two superimposed sinusoidal waveforms whose frequencies are

chosen from a set of eight standardized frequencies. These frequencies were chosen in Bell

Laboratories, where DTMF signaling system were originally proposed as an alternative to pulse

dialing system in telephony.

The detector part of early DTMF systems consisted of analog implemented bandpass �lter-

banks, which were tuned to the eight standard frequencies. As analog lines as well as many

other analog systems were converted to digital, researchers became interested in digital DTMF

detectors. Digital implementation has many advantages over analog implementation such as

accuracy, stability, re-programmability, and chip count; that is, instead of using several analog

chips for detecting multi-channel DTMF tones, only a digital signal processor (DSP) chip is used

for all channels.

Many digital DTMF detecting algorithms have been proposed [1], [2], [3], [4] but they have

several drawbacks as follows:

1. Most of them do not comply with the related International Telecommunications Union

(ITU) and Bellcore recommendations.

2. Some of them have too heavy computational load.

3. Some of them need too much memory to implement on a low cost DSP.

The algorithm proposed by M. D. Felder, J. M. Mason, and B. L. Evans [5],[6] is an e�cient

DTMF detection algorithm which complies with all ITU and Bellcore speci�cations and does

not need any bu�ering. The inventors, simulated their algorithm on Ptolemy's synchronous data

ow (SDF) domain and concluded that this algorithm could be implemented for 24 channels, on

a low cost �xed point DSP such as the TMS320C50. In this project, my aim was to implement

the mentioned algorithm on a TMS320C50 for 24 channels.

This report is organized as follows: Section 2 gives background information about DTMF

signals, standards, and detectors. Section 3 is focused on implementation topics such as modeling

and code generation in C50 domain, the new target for C50 domain and the motivation to write

it. The last section concludes this report.

3

2 Background

A DTMF signal consists of two superimposed sinusoidal waveforms whose frequencies are chosen

from a set of eight standardized frequencies. For example, by pressing the \1" button on the

touch-tone telephone key pad in Figure 1, a signal consisting of a 697 Hz sinusoid and a 1209 Hz

sinusoid is generated. A DTMF detector attempts to detect these frequencies in the presence of

noise, and determines which button is pressed.

#

B

D

1 2 3 A

C987

0

54 6

941

770

852

697

Coloumn frequencies (Hz)

R
ow

 f
re

qu
en

ci
es

 (
H

z)

13
36

14
77

16
33

12
09

*

Figure 1: Touch pad in DMTF systems

Detection of frequencies in noisy environment is a well studied area in digital signal process-

ing. The di�culty of DTMF tone detection is due to the standards which must be satis�ed when

these signals are detected. A summary of ITU and Bellcore's DTMF standards and recommen-

dations are given below:

1) Signal frequencies:

Low group (Hz): 697, 770, 852, 941

High group (Hz): 1209, 1336, 1477, 1633

2) Frequency tolerances:

a. Frequencies with an o�set less than �1.5% must be accepted.

b. Frequencies with an o�set more than �3.5% must be rejected.

3) Signal Reception Timing:

a. Tones with a duration less than 23 ms must be rejected.

b. Tones with a duration more than 40 ms must be accepted.

c. An interruption of more than 40 ms must be accepted as a pause (One tone has �nished,

a new one has started).

d. An interruption of less than 10 ms must be tolerated (The tone continuous).

4

4) Twist (power di�erence between frequencies):

a. The low frequency may have 8 dB higher power

b. The high frequency may have 4 dB higher power

Bellcore has some recommendations which are in fact a subset of ITU speci�cations. How-

ever, Bellcore does not only give some standards, but also some standardized performance tests

as well.

Some Bellcore tests and recommendations which are di�erent from ITU speci�cations are as

follows:

1) Bellcore guard time test:

Guard time is the minimal length of a tone that can be reliably detected. The guard time

is determined by decreasing tone lengths at the input of the detector and counting the number

of detects. The receiver guard time is calculated in ms as (500- total detects)/10 and must be

under 40 ms.

2) Bellcore power level test:

A minimum detection of 25 out of 35 at a tone power of -25 dBm is required.

3) Bellcore talk-o� Tests:

The most important test might be the talk-o� test which determines how often a detector

detects a speech as a valid tone. Bellcore provides three one-hour audio tapes which include

over 50,000 speech samples, to test a detector. Testing a DTMF detector with all these speech

samples is equivalent to testing the detector on one million calls if it was be used in a local

central o�ce. Bellcore speci�ed the following allowed false detection numbers: For digits 0-9;

333 for digits 0-9,*,#; 500 and for digits 0-9,*,#,A-D; 600.

Since these standards were determined when DTMF detectors were analog their aim was

to specify optimum analog detectors. For example, the standard frequencies are determined

so that they have no common multipliers. This guarantees that none of the frequencies have

common harmonics and thereby improves the performance of analog detectors. However, the

most commonly used digital frequency analysis technique, the Discrete Fourier Transform (DFT),

samples the frequency domain with equally spaced samples, and therefore, it is not possible to

have a sample exactly at each standard frequency.

This fact guided researchers to use a Non-uniform Discrete Fourier Transform (NDFT) in

5

DTMF detection algorithms. Although it was possible to have arbitrary located samples in

frequency domain, more computation was required when using the NDFT. The tradeo� between

high frequency resolution and less computational load is the main problem in designing DTMF

detectors.

The new algorithm [5],[6] complies with all frequency speci�cation of ITU, pasts all Bellcore

test, and its computationally e�ciency is such that it can be implemented on a DSP for 24

channels. The algorithm is based on NDFT but uses about 30 di�erent modi�cations. These

modi�cations result in an algorithm which requires no bu�ering and according to the inventors

simulations, requires approximately 1000 words of data memory, 2000 words of program memory

and 24 million instructions per second (MIPS) when implementing on a digital signal processor

for 24 channels.

3 Modeling and Implementation

In order to implement the algorithm on a TMS320C50, my plan was to go through these steps:

� Model the algorithm in Ptolemy's C50 domain,

� Generate code for TMS320C50 within the C50 domain,

� Optimizing the generated code by hand such that it can be implemented on a DSP for 24

channels.

Since the algorithm was already modeled in Ptolemy's SDF domain, I wanted to re-target this

model to C50 domain. Before re-targeting the SDF universe to C50, I checked whether in the

computations any number exceeds the range of -1 to 1. This is important since I would implement

the algorithm on a �xed point processor. Although the creators of the SDF domain model scaled

the numbers in the algorithm in several places, I found 3 points where the numbers exceeds this

range. By re-scaling, I �xed this future problem. Then I created a new universe which included

only the DTMF detector galaxy, a dummy constant input and two black-holes to connect the

outputs of the detector galaxy. The new universe is shown in Figure 2.

3.1 New Stars

All stars which are used in a source domain should be present in the target domain to be able to

re-target a universe. Therefore I have written the required TMS320C50 assembly codes to create

the C50 versions of these three new stars which are used in the SDF domain model. These stars

were:

6

Const ���
���
���

bellcore_dtmf_system

Digit

Valid

Figure 2: The DTMFCode universe which includes only the detector galaxy and some dummy

input and outputs

1. Power : This star computes the power of an input stream. The length of the stream can

be modi�ed by the user.

2. DtmfNdftCoe� : This stars returns the NDFT coe�cients for one of the 8 standard DTMF

frequencies. These coe�cients will be used as an input to the NdftVarD star and are

de�ned as 2 cos(2�fi
fs

) where fi is a DTMF frequency and fs is the sampling rate which can

be de�ned by the user.

3. NdftVarD : This star accepts a NDFT coe�cient and a stream as input and computes the

NDFT over some number of samples which can be de�ned by editing the numSamples

parameter. A second parameter sequentialExecs determines how many times the algorithm

will be executed without reseting the internal states. For example, if you specify numSam-

ples=106, sequentialExecs=2 and a coe�cient of fi=697 is fed to the coe�cient input, this

star will compute the 2� 106 = 312 point DFT at the frequency point fi=697 Hz.

3.2 Problems in C50 Code Generation

The next step was to generate the TMS320C50 assembly code of the DTMF detector within

Ptolemy. At this step I encountered some problems:

1. The generated code was 105 standard letter pages long,

2. Ptolemy generates only code for Texas Instrument (TI)'s TMS320C50 DSP Starter Kit

(DSK).

3. In the generated code, some memory locations are allocated several times.

4. The C50 domain did not have a simulation target.

Why the �rst item was a problem is obvious. Managing 105 pages of code is not easy. A

large portion of the generated code, consisted of memory declaration directives. Since the C50

domain uses a SDF model it allocates memory for every arch in the graph. In other words the

SDF over-models our application.

7

The second item was a problem because I wanted to generate code for the TI TMS320C50

Evaluation Module (EVM). Although both boards have the same processor they are quite dif-

ferent. The di�erences between EVM and DSK is summarized in Table 1

DSK EVM

� No emulation hardware On-board emulation

� No external memory 64K single access RAM (SRAM)

� Simpli�ed assembler Full feature assembler

� Generated code is not in common object COFF format code generation

�le format (COFF)

� Does not have a linker phase, assembler Memory is allocated by

does the memory allocation the linker

� Di�erent assembler directives: .ds .ps .entry .bss .usect .sect .asect

Table 1: Di�erences between DSK and EVM

The main di�erence is that the DSK has very limited features compared with the EVM.

The most important di�erence in my case is the �fth item in Table 1; since the DSK does not

have a linking phase, memory allocation is done by the assembler. This means that for every

code and data block, memory is allocated immediately after the �rst line is encountered. Since

the assembler does not know what kind of code or data is in the following part of the code it

cannot allocate the current block such that the memory usage is optimum. On the other hand,

in the EVM, an assembler is used to generate object �les for every code and data section, and

then a linker is used to allocate memory for each object by using their size. This results in an

optimummemory allocation. When working with small projects, it might be possible to manually

specify starting addresses for each code and data block for optimum memory allocation, but if

the assembly code is as long as 105 pages, this is not an easy job.

3.3 Conversion from DSK compatible to EVM compatible code

At this point, I had the desired assembly code in DSK compatible format and wanted to convert

it to EVM compatible code. At the beginning, it seemed to be a substitution task only. I

thought substitution of all DSK assembler directives to EVM assembler directives should solve

my problem. Therefore I wrote a PERL script which did this job. But after running the script

on the code I realized that the conversion is not as easy as I thought.

The problem was that some numbers which I supposed to be addresses were in fact not

8

addresses. For example, one snapshot of the C50Test star:

LAR AR2,#0001 ; load auxiliary register #2 with 1

XC 1,LT ; execute the next code if acc < 0

SBRK #01h ; subtract 1 from auxiliary register

Although the AR registers are generally used as index registers, in this piece of code the AR2

register is used like an accumulator. In this case, it is not possible to discriminate whether the

number in the LAR command is an address or an immediate value by looking only the LAR

instruction line.

3.4 New Target: SimC50

Since, a code as long as mine cannot be converted from DSK compatible to EVM compatible

manually, writing a new target which generates assembly code for EVM was the best solution.

Therefore I started to write a new target in C50 domain which is called SimC50. This domain

will be able to generate code for EVM and, if required, run it on the EVM simulator to obtain

memory and run time statistics.

One important point is that the C50 stars are written with only DSK in mind; as a result

some of these stars include assembler directives which work only with DSK assembler and are

not compatible with EVM assembler. Therefore all these non-compatible stars have to be �xed

such that both it is possible to use them with both targets. By the time this report was written

the new target was generating code and was compiling code with the EVM assembler. Although

the linked code could be loaded into the EVM simulator there were still some problems with

running and getting the required information back to Ptolmey.

4 Conclusion and Future Work

In this project, my aim was to implement the new ITU and Bellcore compliant, zero bu�ering,

NDFT based DTMF detection algorithm proposed by M.D. Felder, J.M. Mason, and B.L. Evans

on a TMS320C50 for 24 channels. Since the inventors of this algorithm had already simulated

the new algorithm in Ptolemy SDF domain, I planed to use the C50 domain to generate C50

assembly code for the detector and optimize it by hand.

Since, in order to re-target a universe from one domain to another, all stars have to be

present in the target domain, I have created the C50 versions of the three new SDF stars.

9

The generated code was not compatible with the TI TMS320C50 EVM board and an auto-

matic conversion from DSK to EVM compatible code was not easy. This motivate me to write

a new target for the C50 domain which can generate code for the EVM and can simulate it

to obtain memory requirements and computation time information. However, all stars in C50

domain were written for the DSK target and many of them were not compatible for use with the

new target. Therefore I started to modify all C50 domain stars such that they were compatible

with both DSK and EVM targets. By now, the new target is able to generate EVM compatible

code and use the assembler and linker to generate executable binaries. These binaries can be

loaded to the simulator, but running and passing required information like memory usage and

run time back to Ptolemy is not �nished yet.

References

[1] S. L. Gay, J. Hartung, and G. L. Smith, \Algorithms for multi-channel DTMF detection for the WE DSP32

family," Proc. IEEE Int. Conf. Acoust. Speech Signal Processing, pp. 1134{1137, May 1989.

[2] P. C. Mock, \Add DTMF generation and decoding to DSP-� P design," Electronic Design Engineers Magazine,

pp. 205{220, March 1985.

[3] S. Bagchi and S. K. Mitra, \An e�cient algorithm for DTMF decoding using the subband NDFT," Proc.

IEEE Int. Symp. Circ. Syst., pp. 1936{1939, April 1995.

[4] G. Arslan, B. L. Evans, F. A. Sakarya, and J. L. Pino, \Performance evaluation and real-time implementation

of subspace, adaptive, and DFT algorithms for multi-tone detection," IEEE Int. Conf. on Telecommun.,

pp. 884{887, April 1996.

[5] M. D. Felder, J. C. Mason, and B. L. Evans, \E�cient ITU-compliant dual-tone multiple-frequency detection

using the non-uniform discrete Fourier transform." IEEE Signal Processing Letters, To Appear.

[6] M. D. Felder, J. C. Mason, and B. L. Evans, \E�cient digital ITU-compliant, zero-bu�ering, DTMF detection

algorithm using the non-uniform discrete fourier transform." Filed March 10, 1998. A Non-Con�dential

Speci�cation Sheet is available at http://www.utexas.edu/academic/otl/software.html#DTMF.

10

