
Characterization of MMX-enhanced DSP and Multimedia

Applications on a General Purpose Processor

Ravi Bhargava and Ramesh Radhakrishnan

May 8, 1998

Abstract

It has become apparent that proper use of native signal processing(NSP) instruction set

enhancements can result in speedup for targeted applications. Our studies are intended to

study the behavior of the X86 architecture's Multimedia Extension (MMX) instruction set

on signal processing and multimedia algorithms and applications. In addition to quantify-

ing speedup, we make further comparisons based on detailed dynamic instruction pro�ling.

The comparison is done between a suite of Digital Signal Processing (DSP) and multime-

dia programs implemented in C code and the same programs making calls to an MMX

library to perform �ltering, vector arithmetic, and other relevant kernels. As expected,

our analysis shows decreased execution time for most, but not all, of our MMX programs

versus their unmodi�ed equivalents. The observed speedup for the programs using MMX

ranges from 1.2 to 7.5. For each set of programs, we perform a detailed instruction level

analysis that allows us to isolate the speci�c reasons for speedup or lack thereof. This

analysis allows one to understand which aspects of native signal processing are most useful

and how to utilize it most e�ciently.

1



2

1 Introduction

Recent times have produced an increasing demand for digital signal processing and multime-

dia capabilities on a personal computer. The PC industry's attempt to satisfy these demands

resulted in the �rst addition to the X86 instruction set architecture (ISA) in almost a decade.

This extension, introduced in 1996, has been dubbed MMX (for MultiMedia eXtension) and

can outperform lower end DSP processors [2]. This technology adds new assembly instructions

and data types to the existing ISA in an attempt to exploit the data parallelism that is often

available in these types of applications.

1.1 Background

MMX and implementations of NSP [14] [5] on other processors exploit the single-instruction

multiple-data (SIMD) instruction format. One SIMD data type is sent to a arithmetic logic

unit but it actually contains several pieces of data. These pieces of data are then operated on

in parallel in the arithmetic unit. To achieve this functionality, MMX technology adds 57 new

assembly instructions to the X86 instruction set. These instructions can operate on any of the

packed data types and on unsigned or signed data. Saturation and wrap-around arithmetic

are also supported. Multiply-accumulate (MAC), a frequent operation in DSP applications, is

added to the instruction set as well. The MMX multiply and MAC can only multiply only 8-

and 16-bit �xed-point data.

The Pentium processor provides superscalar performance without dynamic execution by uti-

lizing two pipelines called the U (integer) pipe and the V (
oating point or integer) pipe [10].

MMX technology allows two MMX instructions to be executed per instruction. From a pro-

grammers point of view, MMX technology maintains full compatibility with existing operating

systems and applications by aliasing the MMX registers and state on to the 
oating-point reg-

isters and state. Therefore, 
oating point and �xed point operations can not be mixed without

a high performance cost (the EMMS instruction) [9] [6].

When discussing the implementation of many traditional DSP applications, some algorithms

resurface more frequently than others [3] [11] [5] [9] [2] [18] [15] [12]. The most common kernels to

benchmark are the �nite impulse response (FIR) �lter, in�nite impulse response (IIR) �lter, fast

Fourier transform (FFT), least mean squared (LMS) adaptive �lters, matrix-vector arithmetic,

and variations on these. Applications most often benchmarked are image processing, audio

compression, speech and signal processing, and MPEG video decoders.

There have been some e�orts to analyze NSP on a general-purpose processors [14] [13], and

e�orts to compare applications with MMX instructions versus applications without MMX on the

same X86 processor are incomplete [9]. The results found in [9] are only anticipated results based

on simulation. A benchmarking of several applications on the Ultra-Sparc using the comparable



3

Visual Instruction Set (VIS) showed a performance speedup for all applications. Applications

with FIR �lters showed the most improvement while IIR �lters and FFT exhibited little or no

performance increase [5]. In this study, we investigate the performance of a suite of DSP and

multimedia programs. Our studies are conducted on a 166 MHz Intel Pentium processor with

MMX technology.

1.2 Objectives

Although MMX presents the opportunity for performance increase, to our knowledge there have

been no evaluations to corroborate this. Our �rst objective is to observe speedup results for

our benchmark of kernels and applications. Based on our observations, we would like to o�er

insight into developing DSP and multimedia applications on the Pentium.

Our observations include variations in the execution time, dynamic code size, number of

memory references, functions calls, number of MMX instructions, and mix of MMX instruc-

tions. From these observations we hope to answer some questions. How much speedup can

one realistically expect to achieve? Does the parallel execution of data su�ciently make up for

the packing and unpacking overhead of using SIMD instructions? Should one manually in-line

MMX code or place it in libraries? What types of algorithms are worth the hassle of writing

MMX code? The instruction mix of the applications will allow us to provide insight into these

speci�c questions and elucidate other concerns.

To study the e�ects of DSP and multimedia programs, we �rst needed to obtain source

code for such programs and the equivalent MMX assembly code. It is important to note that

there are no publicly available compilers that support MMX instructions. This means that the

burden of incorporating MMX is placed solely on the developers of the application. To achieve

the largest performance increase would involve tailoring MMX assembly code for each speci�c

application or kernel and then in-lining this assembly code. A less time-consuming and more

realistic method would be to write generic MMX libraries for common algorithms and kernels

and then allow developers to make function calls to these libraries like they would a C library.

Intel provides a suite of performance libraries at their web site [6]. Recent versions of the

libraries (including a Signal Processing Library) include functions that utilize MMX. We devel-

oped some C code and acquired the remainder from several resources [8]. We were looking for

code that is fast and e�cient, yet somewhat modular and easy to interpret so that we could

interface the Intel libraries. These resources allow us to develop reliable and e�cient programs

in a relatively short amount of time.

2 Benchmark Programs

We chose four common DSP kernels and two applications that use variations of these kernels to



4

comprise our MMX benchmark suite. The details about the programs in the suite are provided

in Table 1. In the process of creating our two sets of benchmarks (with MMX and without),

we were required to make some decisions and concessions when modifying the original code so

that it could accept MMX library calls. The setup and initialization for the input and output

data structures are the same for the original version of the C programs and the MMX-enhanced

version. In some cases, the MMX data needed to be passed to the library functions in library-

speci�c data structures. In some programs, data is obtained from a �le or written to a �le.

We do this indirectly through a bu�er so that the main engine of any program is reading and

writing to memory and not to disk. It is this section of code that we monitor for performance.

Kernels

Finite Impulse Response Filter Low-pass �lter of length 35 (i.e. 35 coe�cients and 35 entry history).
In�nite Impulse Response Filter Direct form, second order bandpass �lter. Filter length of one, history array

of two and �ve coe�cients.
Fast Fourier Transform 1024 point, in-place, radix-2 decimation in-time FFT
Matrix and Vector Arithmetic Matrix-vector multiplication of a 16x16 matrix with a vector of length 16.

Dot product on two vectors of length 16.

Applications

Doppler Radar Processing Subtracts successive complex echo signals to remove stationary targets from
a radar signal and does power spectral estimation on the resulting samples.
The main frequency is then estimated using the peak of the FFT spectrum.
The FFT is a 16-point, in-place, radix-2 decimation in-time FFT.

Image Dim Reduce the intensity of a Windows bitmap. 480x640 RGB image where
each pixel is represented by 24 bits. Essentially vector multiplication.

Image Color Switch Switch the colors of a Windows bitmap. 480x640 RGB image where each
pixel is represented by 24 bits. Essentially vector multiplication.

Table 1: Summary of Benchmark Kernels and Applications

The FIR and IIR �lter do real-time �ltering. This means that the �lter functions take in one

new input and returns one new output per invocation. In the case of the FIR, IIR, and FFT

kernels and the radar processing application, the unmodi�ed C programs use 32-bit 
oating

point values throughout. For the MMX versions of these programs, 16-bit �xed-point data is

required. The coe�cients and inputs are scaled and truncated appropriately. The FIR, FFT,

and radar programs showed a very small error due to this conversion (order of 10�6). The IIR,

on the other hand, showed similar outputs for the �rst few passes, but soon became unstable

due to this loss of precision.

The data parallelism in the FIR and IIR �lters could come from the constant �lter coe�cients

and the previously computed values (history) retained while calculating the moving average. In

the FFT kernel, there is parallelism available in the input array of known values. In the images

applications, all the data is present at the beginning and the pixels have no history or relation-

ship to their neighbors. More information on the digital signal processing algorithms used in

our suite can be obtained from [8][17] .



5

3 Methodology

First, we produced a working version of the C program. Then, we rewrite the program so

that it could utilize the MMX function libraries and initialize data in a similar fashion. Next,

we compiled the original C program and MMX version using Microsoft Visual C++ 5.0, with

highest level of optimization for maximum speed.

Intel's VTune tool[7] is the source for all of the timing and pro�ling information. VTune

acquires real-time processor data using Intel's on-chip performance counters and is designed

for analyzing \hot spots" of code and optimizing them. Though dynamic instruction pro�ling

is not the intended use of this tool, it can do the dynamic analysis we desire but not very

gracefully. Pro�ling is done interactively on a function by function basis. VTune does make a

few approximations to obtain the cycle counts, but gives a more accurate timing than timing

methods that have to go to the operating system.

Once the programs were compiled, the outputs were compared to see if the results are similar

and to verify no signi�cant errors were being made. At this point, we used VTune to analyze

programs and obtain dynamic instruction information. Using a parser, which we wrote in C++,

we parse VTune output �les and collect the relevant statistical data.

4 Analysis of Results

Most of our results are presented as comparisons (ratios) between the original C code and the

MMX version of each individual benchmark (see Table 2). Our primary interest is to �nd out

speci�cally when MMX is performing well and when it is not.

Real-time Measured Data Projected
Dynamic Data Memory Data Memory Absolute

Program Speedup Instructions References Ref. Cycles Speedup
FFT 1.49 2.35 2.65 1.52 1.61
FIR 1.54 2.28 2.36 0.99 2.59
IIR 0.27 0.33 0.48 0.38 0.27

MatVec 5.71 5.94 4.26 2.49 3.59
Radar 1.26 1.38 1.73 1.32 1.15

Image (Mult) 6.16 6.97 6.67 2.32 3.11
Image (XOR) 5.29 18.30 10.67 4.81 8.40

Table 2: Results in ratios of the Non-MMX program to MMX program
Speedup is calculated as the ratio of clock cycles (obtained using VTune). Data Memory reference are any
assembly instructions that use any memory referencing mode. Dynamic instructions are instructions that actually
get executed during the running of the program. Absolute speedup is the projected speedup on a scalar Pentium
machine with all other hardware remaining the same.

The FFT kernel shows modest speedup (about 1.5 times reduction in cycles) and a dynamic

instruction reduction of 2.35 times. The FFT uses the widest variety of MMX instructions



6

including the multiply-accumulate instruction PMADDWD. The multiply accumulate is an expen-

sive MMX instruction relative to other MMX instructions, requiring more cycles in the Pentium

(three versus one for an add). There is also packing and unpacking overhead(6% of all instruc-

tions and 14% of MMX instructions) that goes with multiplication , but it is still more e�cient

than the non-MMX equivalent.

The FIR kernel shows similar results to the FFT kernel, with 1.5 times speedup from

the non-MMX to MMX program and a dynamic instruction reduction of 2.3 times. Also, like

the FFT, the FIR is bogged down by multiply-accumulates which represent 6% of all the

instructions and 12% of the absolute cycles. The IIR kernel is the only program we studied

that does not show a speedup when using the MMX library calls. The unmodi�ed C program

actually ran 3.7 times faster than the MMX enhanced program and the dynamic instructions

increase by 3.0 times. A more detailed look at the MMX version of the IIR �lter provides a

little insight into the issues here.

First, the IIR �lters for this kernel are small. The short �lter length and corresponding

number of coe�cients remove data parallelism and the amount of useful work that can be done

on each pass. In addition, a cursory look into the MMX assembly code shows that on each pass

the �lter is doing a good deal of error checking and conditional branching based on this error

checking. In this case, the overhead using Intel's robust, MMX IIR �lter is not worth it.

The radar application had somewhat disappointing results even though all of the arithmetic

is accomplished using MMX vector or FFT routines. The execution time speedup is 1.3 times

more with MMX code and the dynamic instructions are reduced by 1.38 times. Although several

MMX routines are called, only 20% of the instructions turn out to be MMX instructions. Most

of the remaining 80% are required to maintain the application. One shortcoming of the MMX

application is that 33 times more function calls are made, many of unseen to the user within the

libraries themselves. The ret and call functions themselves consume 9.1% of the total cycles.

This does not include the additional penalty for passing parameters.

On the other end of the MMX spectrum, the matrix-vector kernel is well suited for an

MMX implementation. The execution time speedup due to MMX is 5.7 times and the dynamic

instruction reduction is 5.9 times. Note that this kernel operates on 16-bit data, so four pieces

of data can be operated on in parallel, yet the improvements are by factors of almost six

times. The di�erence in execution time is largely due to the imul instruction which does

integer multiplication in about 10 cycles versus the pmaddwd MMX instruction which can do

two multiplications in 3 cycles. The dynamic instruction size reduction is due in large part to

maintenance of the loop which is apparently handled more e�ciently in the MMX code.

The image application shows the highest speedup of all programs. The most important

factor is that 8-bit data allows twice the parallelism of 16-bit data. Also, the images are stored



7

in a large array of 8-bit data and are properly aligned on 8-byte boundaries. This allows some

\automatic" packing and unpacking of data by simply loading and storing quad-words (64 bits)

from memory. Finally, note the image processing that we have done requires no arithmetic with

neighboring pixels, only pixels from another image or data array and therefore has high data

parallelism that can be exploited by using MMX.

The dimming image program Image (Mult) does mostly multiplication. Since MMX multi-

ply interleaves the high and low bytes of the result, some unpacking and re-packing is required.

Around 25% percent of the instructions in this program were packs and unpacks. Although, this

seems like a large overhead for doing MMX multiplication, we see that the dynamic instructions

are still reduced by a factor of seven from the highly optimized original code and the execution

time reduces by a little more than six times. The color switching image program Image (XOR)

does a logical XOR between two arrays Our results show that no packing or unpacking is done

at all and now the dynamic instructions reduce by a factor of 18 and the execution time reduces

by almost six times.

5 Generalizing Results

We realize that the scope of our study is limited to the hardware con�gurations of one particular

X86 architecture. While it is nearly impossible to give a direct relationship between the speedup

obtained on the Pentium and speedup one might �nd on other superscalar X86 architectures,

we would like to speculate based on information we have gathered.

We noticed that that the two versions of the code did instruction pairing with di�ering

degrees of success. On a hypothetical X86 machine where pairing would be handled exactly in

the same manner, the ratio of projected Pentium absolute speedup (as shown in the last column

Table 2) would be the actual speedup experienced.

Another observation that we made is that the reduction in dynamic instructions did not

directly translate into increased speedup. This is for a variety of reasons including varying

instruction mix and instruction latencies between the two versions. The dynamic instructions

do not vary on X86 compatible machines (if code is not recompiled). Therefore a more direct

relationship to speedup could occur on a hypothetical aggressive superscalar processor whose

ISA requires instructions with similar frequency and latencies.

A �nal attempt to project MMX results is an observation about memory and resource con-

straints. For instance, in the FIR kernel the number of memory data references is reduced by

2.4 times with MMX, yet the number of absolute memory cycles actually stays the same. This

seems to indicate that the resources of the Pentium are more constraining for MMX code than

the non-MMX code. We see that this is the case for all of the benchmarks as seen in Table

2. This could be related to the fact that MMX instructions are often trying to reference 64-bit



8

pieces of data and C code is more likely to reference smaller data (less than 32 bits) and on a

hypothetical processor that treats all data memory references equally, MMX would show greater

speedups over non-MMX code.

6 Conclusions

We have analyzed the usage of MMX enhanced libraries to implement DSP and multimedia

programs. We found the various changes in execution time that occur when our benchmarks

are run on the Pentium with MMX. We developed several parameters on which to evaluate

native signal processing performance enhancement, including execution time, absolute cycles,

dynamic instruction size, instruction mix, and number of memory references. In addition, we

made observations about the designs of the kernels and how that e�ects the level of performance

that MMX can provide.

The following are some of our more signi�cant �ndings. MMX technology can provide signif-

icant speedup in digital signal processing and multimedia applications. The best performance

increase will always be obtained by tailoring MMX code to �t the application and refraining

from doing hierarchical function calling, but function libraries are a viable option for obtaining

speedup. Although, there is a potential overhead and e�ciency issues to using 
exible, robust

library functions.

It is important to note that reducing memory references is just as important as reducing the

number of arithmetic operations, especially since going to o�-chip cache can be very expensive

on a general purpose processor [4]. These results are speci�c to the Pentium and one can only

speculate on speedups on other X86 architectures.

7 Future Directions

Future work will consist of incorporating larger and more common applications such as JPEG

image compression, MPEG video decoding, and various methods of speech coding [16] [12]. An

analysis on a state-of-the-art processor, speci�cally Intel's Pentium II, will be done. Instead of

obtaining C code and forcing the MMX version to �t that code, we will try targeting our kernels

for MMX. It will be also worth trying techniques like data alignment, array padding, etc to see

what e�ect this has on MMX and possible in-lining possibilities[1].

References

[1] D.B. Alpert and M.J. Flynn. \Performance Trade-o�s for Microprocessor Cache Memories". IEEE
Micro, pages 44{53, Aug. 1988.

[2] Garrick Blalock. \Microprocessors Outperform DSPs 2:1". MicroProcesor Report, 10:17:1{4, Dec.
1995.



9

[3] Garrick Blalock. The BDTIMark: A Measure of DSP Execution Speed, 1997. Berkeley Design
Technology, Inc.

[4] D.C. Burger, J.R. Goodman, and A. Kgi. \Memory Bandwidth Limitations of Future Micropro-
cessors". 23rd Inter. Symp. on Computer Architecture, May 1996.

[5] William Chen, H. John Reekie, Sunil Bhave, and Edward A. Lee. \Native Signal Processing on
the UltraSparc in the Ptolemy Environment". Proc. Asilomar Conference on Signals, Systems,
and Computers, pages 1368{1372, Nov. 1996.

[6] Intel Corporation. \Developers' Insight".
http://developer.intel.com/drg/mmx/manuals/overview/.

[7] Intel Corporation. \Vtune CD".
http://developer.intel.com/design/perftool/vtcd/.

[8] Paul M. Embree. C Algorithms for Real-Time DSP. Prentice Hall PTR, NJ, 1995.

[9] L. Gwennap. \Intel's MMX Speeds Multimedia". MicroProcesor Report, 10, 1995.

[10] Intel Literature, Mt. Prospect, IL, USA. Pentium Processor Family Developer's Manual Volume
3: Architecture and Programming Manual, 1995.

[11] Phil Lapsley and Garrick Blalock. "Evaluating DSP Processor Performance", 1996. Report from
Berkeley Design Technology, Inc.

[12] Lee, Potkonjak, and Mangione-Smith. \MediaBench: A Tool for Evaluating and Synthesizing
Multimedia and Communications Systems". IEEE Micro, 30:1, Dec. 1997.

[13] R.B. Lee. \Multimedia Extensions For General-purpose Processors". IEEE Workshop on Signal
Processing Systems, pages 9{23, Nov. 1997.

[14] Ruby B. Lee. \Accelerating Multimedia with Enhanced Mircoprocessors". IEEE Micro, 15:2:23{
32, Apr. 1995.

[15] M.A. Saghir, P. Chow, and C.G. Lee. \Exploiting Dual Data Memory Banks in Digital Signal
Processors.". Proc. Conf. Architectural Support for Prog. Lang. and Operating Sys., pages 234{243,
Oct. 1996.

[16] A.S. Spanias. \Speech coding: a tutorial review". Proc. of the IEEE, 82:1541{1582, Oct. 1994.

[17] Ferrel G. Stremler. Introduction to Communication Systems. Addison-Wesley Publishing Com-
pany, Reading, MA, third edition, 1990.

[18] Vojin Zivojnovic, Harald Schraut, M. Willems, and R. Schoenen. \DSP's, GPP's, and Multimedia
Applications - an Evaluation of DSPstone". Proc. Inter. Conf. on Signal Proc. Appl. and Tech.,
pages 1779{1783, Oct. 1995.


