
Characterization of MMX-enhanced DSP Applications

on a General Purpose Processor

Ravi Bhargava and Ramesh Radhakrishnan

March 10, 1998

Abstract

We intend to investigate the behavior of MMX optimized applications on an X86

general purpose processor. The applications will be written as C programs. The

speci�c applications are yet to be determined, but will be chosen carefully to represent

the behavior of DSP applications as a whole. We will analyze the instruction mix and

memory access behavior of both applications with MMX instrucions and without using

dynamic performance modeling tools. We hope to isolate the speci�c features of MMX

technology that are responsible for speedup then locate and eliminate any potential

performance bottlenecks. As part of the literature survey, we looked at various journal

papers and other resources desribing the applications, performance evaluation and

e�ective cache utilization.

1



2

1 Introduction

The �rst addition to the X86 instruction set architecture in almost a decade was implemented

to increase the performance and handling of emerging multimedia and signal processing

applications[8]. This extension has been dubbed MMX (for MultiMedia eXtension). This

technology adds new instructions and data types to the existing instruction architecture to

exploit the parallelism of these types of applications. General-purpose processors (GPPs) are

starting to evolve as the types of applications which they run are changing. The ability to

eliminate dedicated Digital Signal Processors(DSP) chips on workstations and PC's in favor

of a more productive real-time GPP would result in reduced cost, lower power consumption,

fewer software platforms, and increased design exibility[3].

DSPs remain ideal for most embedded systems. They are relatively inexpensive, small,

fast, real-time and low-power. GPPs are continuously making strides in all of these areas.[6]

Various benchmarks have shown GPPs, in regard to performance, are now able to handle

tasks that until recently were exclusively thought to be for DSPs[3].

2 Native Signal Processing and MMX

Although native signal processing (NSP) has been receiving more attention recently, the basic

ideas should are not new. GPPs are simply implementing a few concepts from the DSP realm.

This concept is not unique to the Intel Pentium with MMX. Similar extensions have been

implemented on the Sun UltraSparc (VIS), the HP PA-7100LC, the Motorola 88110 and the

MIPS R10000 [5] [8]. One concept that NSP extensions exploit is that of single-instruction

multiple-data (SIMD) instructions. SIMD instruction can operate in parallel on multiple

data elements packed into one large 64-bit register. With MMX, this packing can be done

using MMX instructions or preferably by doing a 64-bit load on properly alligned data from

memory [8] [12].

Including packing instructions, MMX technology adds 57 new instructions to the X86

instruction set. These instructions can operate on any of the packed data types and on

unsigned or signed data. Saturation and wrap-around arithmetic are also supported by the

new instructions. Multiply-accumulate (MAC) was one DSP application speci�c instruction

added to the instruction set. It can only multiply upto 16-bit data and does this calculation

in three cycles.

At an architecture level, two MMX instructions can be executed per instruction in the



3

Pentium II. Also, MMX technology maintains full compatibility with existing operating

systems and applications by aliasing the MMX registers and state on to the oating-point

registers and state. Therefore, oating point and �xed point operations can not be mixed

without a high performance cost. [8] [6]

3 DSP Benchmarks

Benchmarking has been done for processors with MMX technology. There are two types

of benchmarks in which we were interested. One type is GPPs versus the DSPs. We are

interested in whether the GPP is capable of performing at the level of the DSP. Berkeley

Design Technologies, Inc does this benchmarking using execution time as their sole criteria.

The BDTI Benchmarks are 11 DSP algorithm kernels found in \popular applications", in-

cluding variations on the ones we discuss in this paper. To model applications, BDTI uses a

combination of these kernel results and what they call \application pro�ling" [4] [11]. There

results show that some general-purpose processors outperform dedicated DSPs on DSP tasks

by more than 2:1 [3] [2].

The second type of benchmark compares DSP applications with MMX instructions versus

applications without MMX on the same GPP. [8] All applications showed some performance

increase, with speech recognition and videocompression on the low end and image procesing

and audio applications showing as much as 8X performance increase. Benchmarking of

several applications on the UltraSparc using the comparable Visual Instruction Set (VIS)

showed a performance speedup for all applications. Applications with FIRs showed the most

improvement while IIRs and FFTs exhibited little or no performance increase. [5]

4 Proposed Kernels

When discussing the implementation of many traditional DSP applications, the same algo-

rithms keep resurfacing more frequently than others. [4][11][5][8][3][16][14] Although many of

these kernels can be obtained in MMX libraries[6], it is important that we understand these

algorithms so that we can be most e�cient in our use of MMX. The following algorithms

are a few of these common kernels and ones that we will use in our study.

Finite Impulse Response Filter A �lter allows certain frequency components of the

input to pass unchanged to the output while blocking other components. One class of digital



4

�lters is the �nite impulse response (FIR) �lter. These �lters are moving average �lters and

allow their response to an impulse to die away in a �nite number of samples. The output is

simply a weighted average of the inputs values. y(n) =
PM�1

k=0 ck _x(n� k) There is a window

of these weights (ck) that takes exactly the M most recent values of x(n) and combines them

to produce the output. [7] [5] Given an input sequence of length N and a �lter of length M,

the computation will include N*M multiply-accumulate operations. [6]

In�nite Impulse Response Filter The other class of digital �lters are the in�nite im-

pulse response (IIR) �lters. This includes the autoregressive aspect of �ltering. IIR �lters

are realized by feeding back a weighted sum of past output values and adding this to a

weighted sum of the previous and current input values. A given order IIR �lter can be made

more frequency selective than the same order FIR �lter making them more computationally

e�cient. The tradeo� is that the implementation is much more di�cult. [7] IIR �lters can

be either just the autoregressive case y(n) = x(n) �
PP�1

p=0 apy(n � p) or the most general

case with moving averages and auto-regression y(n) =
PQ�1

q=0 bqx(n� q)�
PP�1

p=0 apy(n� p).

Least Mean Square Algorithm Adaptive �lters attempt to �nd an optimum set of

�lter parameters based on the time varying input and output signals. The least mean square

(LMS) algorithm is one such adaptive algorithm. LMS can be applied to both IIRs and

FIRs. The adaptive FIR system transfer function is: y(n) =
PQ�1

q=0 bq(k) _x(n � q) where

b(k) indicates the time-varying coe�cients of the �lter. The LMS algorithm updates the

�lter coe�cients based on the method of steepest descent, which is the following (vector

notation): Bk+1 = Bk + 2��kXk where Bk is the coe�cient column vector, � is a parameter

that controls the rate of convergence (very critical), and �k is the error signal. [7]

Fast Fourier Transform The fast Fourier transform (FFT) is a very e�cient algorithm for

computing the discrete Fourier transform (DFT) of a sequence. The DFT is represented as

follows: X(k) =
PN�1

n=0 x(n) _e
�j2�kn=N and can be simpli�ed to X(k) = Xev(n)+W

k
N=2Xod(n)

where W nk = e�j2�kn=N , Xev represents the even elements and Xod represents the odd ele-

ments. From this point, the DFT can be divided into even and odd halves repeatedly until

one is left with only two point DFTs to evaluate. [7] This core computational block in an

FFT is referred to as a buttery. Each buttery only requires one multiplications and two

additions. In the original DFT, O(N2) multiplies are required, but using FFT the number

of buttery computations required is N
2
log

2
(N). [6] [7]



5

Vector-Matrix Multiplication Taking advantage of these algoritms will require that

each be reformulated as a vector-matrix multiplication. [5] A native vector/matrix multiply

algorithm traverses the matrix in columns. Matrices are typically arranged in row order

leaving the column elements scattered in memory. Therefore, the straight forward approach

- applying SIMD techniques to the inner loop - is not feasible. Instead, in an algorithm for

X86 media extensions, the matrix should be split into elements of 4x2, and the input vector is

split into elements of two. The overall task can be broken down into multiplications of these

fragments. The revised algorithm would work on four columns of the matrix in parallel, and

accumulates results in a set of four accumulators. Overall, the number of iterations through

the loops is reduced by a factor of eight, at the cost of a little more work per iteration. [6]

It is this type of enhancement that makes MMX most e�ective.

5 Proposed Applications

We propose to do at least two DSP applications for this project and possibly more based

on time and feasibility. The researched benchmarks showed little consistency in chosen

applications, but all used the same core kernels as mentioned above. The following are

applications for which we have acquired C code and are strongly considering.

Linear predictive coding (LPC) is a method for speech coding. This particular

version of an LPC is for a 2400 bits-per-second voice coder and operates on 16-bit or 32-bit

data. The LPC-10 coder uses a 10-th order predictor to estimate the vocal-tract parameters

and has several �ltering stages including one for an FIR.[15] [13]

CD to DAT Conversion takes audio intended for a compact disc(CD) player and

converts it to digital audtio tape(DAT) format. This is basically a sampling and interpolation

problem since CD is sampled at 44.1 KHz and DAT is sampled at 48 Khz. Our C code,

obtained using Ptoelmy, requires three FIRs in series and the audio samples are 16-bits.

YUV to RGB Conversion does conversion between YUV, the broadcast video display

format, and RGB, the format for computer monitors. This application uses mostly matrix

multiplication. This application is attractive because colors are often represented with 8-bits

and we would like to have at least one 8-bit data application.

Doppler Radar Processing is one possible FFT Applications for which we have ob-

tained C code. This application does the processing necessary to remove stationary targets

and estimate the frequency of the remaining Doplar Signal. The problem with the FFT is

�guring out how complex numbers are represented in the C code, how they are represented



6

in the provided MMX library functions, and getting the formats to match.

ARMA modeling of signals, (Auto-Regressive Moving Averages) which is used in

spectral estimation, can be done using an IIR with the LMS adaptive algorithm,. The core

kernel in this application is a biquad IIR.

We feel that any combination of these DSP applications will provide a good feel of how

MMX a�ects performance in this area as a whole. After some more in-depth look into the

MMX libraries, compilers, and mentioned C code we will choose which applications we would

like to use in our study.

6 Caching with Multimedia Applications

The applications for multimedia or DSP are very data intensive and therefore cache per-

formance plays a signi�cant role in the overall performance. Since the earlier work on

benchmarking was mostly done on kernels we feel that this overlooked the e�ect of the cache

and memory latency. The benchmarking results that we found consisted mainly of execution

time and cost/performance ratios [4] [3]. In our study we will also look at the e�ects of of

various caching schemes and how much the memory latency a�ects overall performance. We

will try to improve performance by hiding the memory latency as much as possible.

Caching On Digital Signal Processors DSP processors require multiple memory ac-

cesses within one instruction cycle for most of the DSP algorithms like an FIR �lter. Havard

architectures achieve multiple memory accesses per instruction by using multiple indepen-

dent memory banks connected to the processor data path via independent buses. Other ways

to achieve higher bandwidth include using fast memories that support multiple, sequential

accesses per instruction cycle over a single set of buses and using multi-ported memories that

allow multiple concurrent memory accesses over two or more independent set of buses. A

processor might use on-chip memory that can complete an access in one half of an instruction

cycle. Caches in DSPs are generally much smaller and simpler than the caches associated

with general-purpose processors [10]. The major types of DSP processor caches are:

Repeat Bu�er: This is a one word instruction cache that is used with a special repeat

instruction. A single instruction that is to be used multiple times is loaded into the bu�er,

and subsequent executions fetch the instruction from the cache, freeing the program memory

to be used for a data read or write access.



7

Single-sector instruction cache: This is a cache that stores some number of the most

recent instructions that have been executed. If program ow of control jumps back to an

instruction that is in the cache, the instruction is executed from the cache instead of being

loaded from the program memory and,

Multiple-sector instruction cache: This type of cache functions like the single-sector

cache, except that two or more independent segments of the program memory can be stored.

Traditionally, the exploitation of memory organization in DSPs has been the responsibil-

ity of the programmer. The programmer has to allocate data manually by using assembler

directives, if programming is done in assembly or giving the compiler hints, if programming

in a high level language. This allows a deterioration in performance if the programmer is

unaware of the memory hierarchy or if the cache is transparent to the programmer. Another

approach to generating DSP code is using the Ptolemy package developed at the University

of California, Berekely. Ptolemy enables designers to specify embedded applications in the

form of hierarchical dataow graphs of functional blocks. The resulting code may not take

the cache into consideration and more e�ective code can be produced if code optimization

is done.

Caching On General Purpose Processors Cache memories in a GPP bridges the gap

between fast microprocessors and relatively slow memory. Cache memory holds recently

referenced regions of memory and reduce the number of cycles the processor must stall

while waiting for data. Caches work well for programs that exhibit good locality. Tweaking

the source code or other hacks can help to increase the cache performance by altering the

memory reference pattern. Literature has been published [1] on of the software techniques

to improve cache performance. Some of these that could help in improving the performance

of multimedia applications such as: (i) Merging Arrays (ii) Padding and Aligning

Structures (iii) Packing (iv)Loop Fusion and Fission and (v) Blocking

Code Transformations for E�cient Caching in Embeddded Processors We have

to take into account di�erent parameters like locality of data, size of data structures, access

structures of large array variables, regularity of loop nests and the size and type of cache

in order to improve the cache performance. We also have to take the potential overheads

into account due to the di�erent transformations on the instruction count and the number

of execution cycles. We cannot do optimization of cache incurring a large overhead on the

instruction count or execution cycles, as in a general purpose processor since we have to



8

meet real time constrains and code size limitations. Some of the code related issues we will

try to focus on will be:

(i) Data Flow and Locality Analysis In this we will try to identify the parts in the

program where we can have potential gain by means of compiler optimizations. Parts of the

program that are potential bottlenecks are also identi�ed.

(ii) E�ect of In-lining of code After the parts of the program that have potential for

optimization are identi�ed, the improvement due to inlining of code would be estimated.

(iii)Global Loop Optimizations The next step would be to apply loop transformation

over the scope of the entire program so as to improve the regularity and locality of the

program. This would result in reduced number of cache and memory accesses. Dependecy

bottlenecks and redundant accesses have to be eliminated, but the constrains in code size

should also be kept in mind at the same time.

(iv) Data Layout in Cache If possible, de�ne the data layout in main memory and

caches to obtain maximum cache utilization.

Caching and Power Correlation The relation between the extent of data caching and

power has been explored by Kulkarni et al. [9], in their paper a power function is used which

is dependent upon access frequency, size of memory, number of read/write ports and number

of bits that can be accessed in every access. The total power is given by Pt = Nt:F(St),

where nt is the total number of access to memory, St is the size of the memory and F is a

polynomial function with di�erent coe�cients representing a vendor speci�c energy model

per access. It is seen that better usage of cache improves the power cost and therefore

improving cache performance for embedded systems is very important.

7 Project Direction

We intend to look more closely at the increased performance provided by the new MMX

instructions on X86 processors. First, we must benchmark some applications to indicate

when, where, and how much performance increase we are achieving. Then, we would like

to characterize the dynamic assembly level instructions and discover how and why the per-

formance increases. Finally, we will propose ways to optimize the use of these instructions

based on our �ndings. We feel that more advanced software and hardware techniques could

be used to improve performance even further.



9

References

[1] D.B. Alpert and M.J. Flynn. \Performance Trade-o�s for Microprocessor Cache Memories".
IEEE Micro, pages 44{53, August 1988.

[2] Je� Bier. \DSP on General Purpose Processors { An Overview". Berkeley Design Technology,
Inc., January 1997. Presentation to MicroDesign Resources dinner meeting.

[3] Garrick Blalock. \Microprocessors Outperform DSPs 2:1". MicroProcesor Report, 10:17, De-
cember 1995.

[4] Garrick Blalock. The BDTIMark: A Measure of DSP Execution Speed, 1997. Berkeley Design
Technology, Inc.

[5] William Chen, H. John Reekie, Sunil Bhave, and Edward A. Lee. \Native Signal Processing on
the UltraSparc in the Ptolemy Environment". Proc. of the 30th Annual Asilomar Conference
on Signals, Systems, and Computers, November 1996.

[6] Intel Corporation. \Developers' Insight".
http://developer.intel.com/drg/mmx/manuals/overview/.

[7] Paul M. Embree. C Algorithms for Real-Time DSP. Prentice Hall PTR, NJ, 1995.

[8] L. Gwennap. \Intel's MMX Speeds Multimedia". MicroProcesor Report, 10, 1995.

[9] C. Kulkarni, F. Catthoor, and H. De Man. \Code Transformations for Low Power Caching in
Embedded Multimedia Processors". To be published in IPPS/SPDP, 1998.

[10] Phil Lapsley, Je� Bier, Amit Shoham, and Edward A. Lee. DSP Processor Fundamentals.
Berkeley Design Technology, Inc, Fremont, CA, 1996.

[11] Phil Lapsley and Garrick Blalock. Evaluating DSP Processor Performance, 1996. Berkeley
Design Technology, Inc.

[12] Ruby B. Lee. \Accelerating Multimedia with Enhanced Mircoprocessors". IEEE Micro,
15:2:23{32, April 1995.

[13] Theodore S. Rappaport. Wireless Communications. Prentice Hall PTR, NJ, 1996.

[14] M.A. Saghir, P. Chow, and C.G. Lee. \Exploiting Dual Data Memory Banks in Digital Signal
Processors.". Proceedings of the 7th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 234{243, October 1996.

[15] A.S. Spanias. \Speech coding: a tutorial review". Proceedings of the IEEE, 82:1541{1582,
October 1994.

[16] Vojin Zivojnovic, Harald Schraut, M. Willems, and R. Schoenen. \DSP's, GPP's, and Multi-
media Applications - an Evaluation of DSPstone". Proceedings of the International Conference
on Signal Processing Applications and Technology, pages 1779{1783, October 1995.


