
Low-cost Real-time Decoding of Broadcast

Time and Frequency Standard

Amey Deosthali and Srikanth Gummadi

Department of Electrical and Computer Engineering

The University of Texas, Austin, TX 78712-1084

E-mail: famey,gummadig@vision.ece.utexas.edu

May 8, 1998

Contents

1 Introduction 1

2 Background 2

2.1 WWVB Time Code : 2

2.2 Friedman Interpolator : 2

3 Modeling the decoder 3

3.1 Signal Processing Front-end : 4

3.1.1 Sampling the Analog Signal : 4

3.1.2 Estimating Signal Power : 4

3.2 Decision Logic Back-end : 5

4 Implementation on a Microcontroller 5

4.1 Decoding the time standard : 5

4.2 Frequency Reference : 7

5 Conclusions 8

Abstract

The Time and Frequency Division of the National Institute of Science and Technol-

ogy (NIST), which is located in Boulder, Colorado, is responsible for maintaining and

distributing the time and frequency standard for the United States. NIST broadcasts

the time and frequency standard from radio stations WWV, WWVH, WWVB, and

GOES (Geostationary Operational Environmental Satellite) satellites. We present a

new approach to decode the WWVB broadcast time information and to generate an

accurate frequency reference calibrated to the NIST primary standard. The key inno-

vations are that we develop new, zero-bu�ering algorithms and implement them on a

microcontroller to decode the WWVB time code information and to use a pulse-width

modulator to generate an accurate frequency reference. The microcontroller-based de-

coder provides a convenient and automatic way of setting the time and a secondary

frequency standard referenced to the NIST primary standard. Our decoder for decod-

ing the broadcast time information and generating an accurate frequency reference is

the �rst to be implemented on a microcontroller and is at least half the cost of the

existing WWVB decoders.

1 Introduction

Many businesses such as electric power companies, radio and television stations, telephone

companies, aerospace industry, and the computer network industry require precise frequency

and global time information. These users need to calibrate their timing to a reliable and

internationally recognized standard. The National Institute of Standards and Technology

(NIST) provides this standard for most users in the United States using radio services such

as WWV located in Ft. Collins, Colorado, WWVH located in Kauai, Hawaii, and WWVB

located in Ft. Collins, Colorado, as well as GOES (Geostationary Operational Environmental

Satellite) satellites [1].

Existing WWVB time decoders are available in the form of integrated circuits. The

clocks using such integrated receivers range in price from $30 to $200. In this project, we

focus on the design of a microcontroller-based radio-controlled clock which provides accurate

time synchronization and frequency calibration by decoding the WWVB signal. The radio-

controlled clock automatically sets itself to the radio signal that is transmitted by the WWVB

station. Apart from providing accuracy, the radio-controlled clock provides a convenient and

automatic way of setting the time shown by the clock to the correct time.

In our decoder we sample the 60 kHz analog signal to get a digital signal and then

track the power of the digital signal to decode the time information. Our technique has

low complexity and is ideal for an implementation on a microcontroller which range from $2

to $15 in volumes of 100. We implement the time information decoder and the frequency

reference generator on PIC microcontrollers which cost about $6 in volumes of 100. Taking

other peripheral costs into consideration (such as the antenna cost), the microcontroller based

decoder should still be able to reduce the cost of a WWVB decoder by half as compared to

the existing decoders. To the best of the knowledge of the authors, this is the �rst radio

clock that has been implemented on a microcontroller.

The key innovations of our technique are new zero-bu�ering algorithms and microcon-

troller implementations to decode the WWVB time code information and the use of a pulse-

width modulator to generate an accurate secondary frequency reference from the WWVB

signal. The key to the microcontroller implementation is to use bandpass sampling of the

WWVB signal to reduce the sampling rate by a factor of 20. Our decoder provides a reliable,

low-cost alternative to the existing WWVB decoders.

In Section 2, we describe the time code transmitted by radio station WWVB and discuss

1

the Friedman Interpolator. Section 3 describes the modeling of the radio clock in Ptolemy.

Section 4 focuses on the implementation of the radio clock on a microcontroller.

2 Background

2.1 WWVB Time Code

Radio station WWVB continuously broadcasts time and frequency signals at 60 kHz, pri-

marily for the continental United States. It broadcasts at a rate of 1 pulse per second using

pulse-width-modulation. Each pulse is generated by reducing the carrier power by 10 dB at

the start of the second, so that the leading edge of every negative-going pulse is on time.

Full power is restored either 0.2, 0.5 or 0.8 seconds later to convey either binary \0", binary

\1" or a reference marker, respectively [2].

The WWVB time code is sent in Binary Coded Decimal (BCD) format [3]. Every minute,

the WWVB time code sends the current minute, hour, day of year, 2 digits of the current

year, and Daylight Saving Time (DST) and leap year indicators. The coded information

refers to the time at the start of the one-minute frame. Seconds are determined by counting

pulses within the frame. Each minute begins with a reference marker pulse lasting for 0.8

seconds. A position identi�er pulse (reference marker) lasting for 0.8 seconds is transmitted

every 10 seconds.

2.2 Friedman Interpolator

The Friedman interpolator is an algorithm for estimating the frequency of a single sinusoid

in white noise, based on the computation of the interval between zero crossings [4]. In

the following analysis, only the negative to positive going zero crossings of the sinusoid are

considered.

At the arrival of the �rst positive sample following the zero crossing, the estimate of the

period of the sinusoid Te(n) is computed as

Te(n) = [K(n)� �(n) + �(n� 1)]Ts (1)

where K(n) is the number of sampling intervals between the samples following the (n� 1)th

and nth zero-crossings, and �(n)Ts and �(n� 1)Ts are the time intervals between these zero

crossings and the next positive samples (Figure 1).

2

 (n-1)Ts

K(n)Ts

Ts

Te (n)

t z (n-1) t z (n)

e(n-1)

y

t

e(n-1)

 (n)Ts

Figure 1: Frequency estimation by zero-crossing detection

If e(n) is the error made in the computation of the nth zero crossing, it can be shown [4]

that

Te(n) = Tsin + e(n)� e(n� 1) (2)

where Tsin is the actual period of the sine wave. The spectrum of Te(n) contains a DC

component which is equal to the actual period of the incoming signal, and the spectrum

of the error signal which is concentrated in the high-frequency region. Thus, by using an

appropriate low-pass �lter, the period, and thus the frequency, can be computed to an

arbitrary degree of accuracy (of the order of 10�4 to 10�6).

We modi�ed the above algorithm to estimate the phase information of the received signal.

By knowing the phase of the sinusoid we can know the exact time that has elapsed from the

previous sample. Thus we will be able to generate an accurate frequency reference.

3 Modeling the decoder

The decoder has two main parts: a signal processing front-end and a decision logic back-end.

The signal processing front-end is modeled in the Synchronous Dataow (SDF) domain. It

has two main components: a sampler, which samples the continuous-time analog signal to

convert it into a discrete-time digital signal, and a power estimator, which estimates the

power of the received signal.

The decision logic back-end is modeled in the Finite State Machine (FSM) domain.

It makes the decisions on the bits that are supplied by the signal processing front-end.

The decision logic back-end is responsible for calculating the correct local time from the

3

transmitted Coordinated Universal Time (UTC).

3.1 Signal Processing Front-end

The decoder has an analog receiver that consists of a loop antenna for receiving the low-

frequency band, and a high-Q ampli�er for selecting and amplifying the 60 kHz signal. This

analog signal is the input to the analog-to-digital converter.

3.1.1 Sampling the Analog Signal

In this application, the transmitted signal is a pure sinusoidal signal of 60 kHz and not a

modulated signal. Sampling a pure sinusoid at a frequency which is lower than the Nyquist

rate and following it by a low pass �lter would result in another sinusoid but of a di�erent

frequency [5]. Since our aim is to track the changes in signal power, frequency of the signal

is not important. The sampling frequency is restricted by the following factors :

1. The transmitted frequency must not be a multiple of the sampling frequency. Otherwise

the low-pass component of the aliased signal would be the DC component. Thus all

the information about the signal will be lost.

2. The sampling frequency should be low enough so that we can perform all the required

calculations on the present sample before the next sample arrives.

3. The sampling frequency should be as high as possible so that we get more number of

samples to estimate the power (hence more accurate).

4. The sampling frequency should map as an integer count on the microcontroller.

5. The sampling frequency should be greater than 2 Hz (twice bandwidth of message

signal)

Taking all the above conditions into consideration we choose 6.25 kHz as the sampling

frequency.

3.1.2 Estimating Signal Power

Accurate estimation of the power of the received signal is a very important task in the

decoding of the WWVB signal. The signal power estimator has to be simple, e�cient,

accurate, and fast. In our implementation we have used a single pole in�nite impulse response

4

(IIR) �lter to estimate the signal power [6]. The relation between the power P (n) and the

received signal x(n) is shown in (3).

P (n) = �P (n� 1) + (1� �)x2(n) (3)

where 0 < � < 1 is the location of the pole of the IIR �lter. When � is close to 1, the

current estimate of power depends more on the previous estimate of the power than on the

instantaneous value of signal power and is more accurate. Thus, if � is pushed close to the

unit circle, then the IIR �lter gives an accurate estimate of the signal power.

3.2 Decision Logic Back-end

The output of the signal processing front-end is a binary \0" or binary \1". After obtaining

the binary bits we need to decode them so as to obtain the correct time. This would include

adjusting the day and time depending on the daylight savings time bit and leap year bit.

The displayed time would also be changed depending on which time zone (eastern, central,

paci�c, mountain) was selected. This decision making logic is modeled in the Finite State

Machine (FSM) domain.

4 Implementation on a Microcontroller

The radio clock modeled above was implemented on a PIC microcontroller from Microchip

Technology Inc. We chose PIC16C7X family because of their low cost (about $6 in bulk)

and its Harvard architecture (similar to the architecture of a DSP) [7]. This family of also

has an on-chip analog to digital converter, thus reducing peripheral interface latency.

4.1 Decoding the time standard

The decoder for time standard is implemented using PIC16C71 which is a 18-pin microcon-

troller with an internal 8-bit analog to digital converter. All of the instructions are single

cycle instructions (400 ns with a 10 MHz clock input) except for program branches which

take two cycles [7]. It also has an 8-bit timer-counter and a watchdog timer. PIC16C71 has

a high performance RISC CPU and has only 35 instructions.

The sampling frequency was chosen to be 6.25 kHz. 6.25 kHz is equivalent to a sampling

interval of 160 �s, thus 400 instructions could be executed between two samples. A value

5

?

| CP - PP |
< TOL

?

< P_low_TOL

?

?
T_C - -

T_C = 0

?

flag_1 = 1

flag_1 = 0

P_high = CP

THR = P_low+P_high
2

T_C = x

EOP = 1

flag_1 = 1
?

T_C = - -

T_C = 0

?

flag_1 = 1

flag_1 = 0

P_low = CP

T_C = x

flag_2 = 1

P_low_TOL = 0.2*P_low

flag_2 = 1

flag_1 = 1

A

A B

NO

YES

NO YES

YES

NO

NOYES

YES

NO

NOYES

YES

NO

Estimate
Power

CP = Current power
PP = Previous power
P_low = First stabilized power level
P_high = Second stabilized power level

P_low_TOL = Variation of power
= 0.2 * CP

about P_low
= 0.1 * P_low

TOL = Variaton of power about the current power

T_C = Timer count
x = Variable to which T_C is initialized

(fixed by the programmer)
THR = Threshold for determining the power dip
flag_1 = Indicates that the power has stabilized
flag_2 = Indicates that the first power level

has been established
EOP = End of phase 1

| CP - P_low |

Figure 2: Flowchart to estimate the two power levels

corresponding to 400 was stored into the timer so that it would interrupt after 400 instruction

cycles and sample the analog data.

The algorithm used for decoding can be broadly divided into three phases:

1. Estimate the two power levels Plow and Phigh and set the threshold to be between them

(Figure 2).

2. Track the start of the minute. Two consecutive reference markers indicate the start of

a new minute.

3. Track the bits, decode the bits with appropriate weights (BCD), and calculate the local

time.

Our technique has very low computational complexity. It requires only three multiplies

per sample for phase 1 and two multiplies per sample for phases 2 and 3, respectively. All

multiplications are between a variable and a constant and are optimized for length and run

time. Table 1 summarizes the memory and computational power required.

6

Program Data Multiplies Divide

Memory Memory per sample per sample

Decoding the 800 words 22 bytes 3 0

time standard

Generating a 500 words 15 bytes 1 1

frequency reference

Combined decoder 1300 words 40 bytes 4 1

Table 1: Worst case analysis of memory requirements and computational power.

4.2 Frequency Reference

Generation of a frequency reference requires a pulse-width-modulation (PWM) unit, and

hence we choose PIC16C72 for this application. PIC16C72 has 2000 words (2000 � 14 bits)

of internal memory and 128 bytes of data memory. It has a PWM unit and a 5-channel 8-bit

A/D converter.

The PWM unit generates a square wave of speci�ed period and duty cycle. The period

and duty cycle counts are stored in two PWM registers. PWM unit has a prescaler and

a postscaler. Depending on the prescaler value n, the timer is incremented every n cycles,

until it matches the PWM period count. The timer starts counting from 0 and the PWM

outputs high. When the timer value equals the duty cycle count, the PWM output is made

low. When the timer value equals the period count, the PWM output is again made high

and the timer is reset to zero.

Once the Friedman interpolator locks onto the signal and the frequency estimate stabi-

lizes, the PWM unit is started at the �rst sample after a positive going zero crossing. At each

positive going zero crossing, �(n)Ts in Figure 1 is calculated. Since we know the period of

the sinusoid accurately, we can calculate the time that this sample occurs from the �rst zero

crossing time. This time can then be converted into an appropriate timer count by dividing

it by the prescaler value n times the instruction cycle speed. This timer value is compared

with the actual timer 2 value. Any di�erence between the two is stored. The di�erence may

not be accurate per cycle because of the phase jitter. To remove the e�ects of phase shift, we

keep a moving average of the di�erence between the calculated timer value and the actual

timer value. At the end of one day, the di�erence is incorporated into the timer count. The

whole process is then repeated.

7

5 Conclusions

Market forecasts [8] suggest that radio-controlled time-keeping will soon be as popular as the

ubiquitous quartz watches and clocks. This project is aimed at providing a low-cost solution

for an useful product that is used daily by many people. We present a new approach to decode

the WWVB broadcast time information and to generate an accurate frequency reference

calibrated to the NIST primary standard. This reference frequency has a relative frequency

of at least 10�4 to 10�6 and can be used as a secondary standard. The key innovations are

new, zero-bu�ering algorithms and microcontroller implementations to decode the WWVB

time code information and to use a pulse-width modulator to generate an accurate frequency

reference from the WWVB signal. We implement the time information decoder and the

frequency reference generator on PIC microcontrollers. The decoders were tested on separate

microcontrollers of the same family (PIC16C7X). A combined decoder can be implemented

on a PIC16C72. The microcontroller based decoder is at least half the cost of the existing

WWVB decoders. Our combined decoder for decoding the broadcast time information and

generating an accurate frequency reference is the �rst to be implemented on a microcontroller.

References

[1] G. Kamas and M. A. Lombardi, NIST Time and Frequency Users Manual. Boulder, CO: National

Institute of Science and Technology, 1990.

[2] T. E. Parker and J. Levine, \Impact of New High Stability Frequency Standards on the Performance of

the NIST AT1 Time Scale," IEEE Trans. on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44,

pp. 1239 { 1244, Nov 1997.

[3] NIST Boulder (Colorado) Laboratories, \http://www.boulder.nist.gov."

[4] V. Friedman, \A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white

noise," IEEE Trans. on Signal Processing, vol. 42, pp. 1565 { 1569, June 1994.

[5] P. E. Wellstead, \Aliasing in system identi�cation," Int. Journal of Control, vol. 22, pp. 363 { 375, Sep.

1975.

[6] Z. Dusan, \Mean power estimation with a recursive �lter," IEEE Trans. on Aero. Electronic Sys., vol. 13,

pp. 281 { 289, May 1977.

[7] Microchip Technology Inc., \http://www.microchip.com."

[8] BRG Atomic Time Clocks and Watches, \http://www.�est.com/ bodegroup/arc1.html."

8

