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Optimal Architectures for Massively Parallel Implementation of Hard

Real-time Beamformers

Abstract

Computationally intense spatial filtering, called beamforming, is central to acoustic imaging.

Typically, in order to achieve an update rate similar to slow scan television, beamforming must

operate in real-time, which leads to massive parallel processing. This paper surveys appropriate

work in the field of synchronous data flow (SDF) as applied to the beamforming problem and

defines the objectives of a research project. The project is focussed on the application of SDF

techniques as a strategy to select the optimal architecture for a beamformer.  In order to formulate

the proper approach, the applicable theory of SDF is reviewed, including methods used to

optimize designs within the SDF domain. The beamforming process is described, and two

competing architectures of the beamformer are defined, along with the optimality criteria for

selection.
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I.  Introduction.

Computationally intense spatial filtering called beamforming is central to acoustic imaging.

Typically, in order to achieve an update rate similar to slow scan television, beamforming must

operate in real-time. The real-time nature of beamforming leads to parallel digital signal

processing for state-of-the-art applications in diverse fields such as seismic exploration,

aeroacoustic measurements, ultrasonic medical imaging, and underwater acoustics [1].

Many times, these applications require a large number of processors running algorithms in

parallel. Efficiency in memory size, processor count, and execution time is critical to achieving an

optimal system solution. Modern digital signal processor (DSP) attributes such as on-chip

program and data memory, instruction cache, and direct memory access (DMA) can be exploited

to achieve optimization. These DSP design features produce a need to minimize code size to fit in

on-chip memory, maximize repeated instructions to utilize processor cache, and minimize

interprocessor communication overhead in multiprocessor environments.

Modeling and synthesis of the system, using data flow graphs, can actualize these efficiencies.

In particular, synchronous data flow (SDF) is appropriate for systems exhibiting hard real-time

data independent control flow, such as the beamformers covered in this research. Modeling

techniques appropriate for the application will be investigated and the modeling methodology will

be selected for characterizing two beamformer architectures.

In this paper, we will first describe the project objectives and our approach, review SDF

theory, and then cover methods used to optimize designs within the SDF domain. Following a

review of the beamforming process, we will describe the project implementation. Finally, we will

comment on the expected benefits of this research.

II.  Project Objectives and Approach

The primary goal of this project is to identify the most efficient architecture for a prototypical

beamformer by modeling two fundamental processing structures. This project is divided into two

phases. The first phase, now complete, consisted of a comprehensive literature search. It was

conducted to define the current research level in the two pertinent areas: SDF and beamforming.
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In the follow-on second phase, we will model two beamformer architectures focussing on

efficiency as described above.

III.  SDF Modeling Approach for Optimization.

SDF is a natural representation for signal processing algorithms, such as beamforming, that

are amenable to compile time scheduling techniques [2] [3]. In a data flow graph, computations in

an algorithm are represented by vertices, called actors. These actors are connected by arcs which

pass data in one direction between actors. An actor can only be fired (executed) when a

predefined number of data values, called tokens, appear at its inputs. The tokens are placed into

first-in first-out (FIFO) queues, called edges. An example of a data flow graph is given in figure 1.

In this example, A, B and C are actors. The values w, x, y and z represent the number of tokens

either generated or consumed by each actor.

In SDF, when an actor is fired, it consumes a fixed number of tokens on its inputs and

produces a fixed number of tokens on its outputs. These parameters are known at compile time.

Therefore, we can statically schedule algorithms represented by SDF.  By schedule, we mean the

task of assigning actors in the data flow graph to processors, ordering execution of these actors

on each processor, and determining exactly when an actor fires so that all data precedence

constraints are met [3].   A valid schedule is a finite schedule that fires each actor at least once,

does not deadlock, and produces no net change in the number of tokens queued on each edge [4].

It can be found by constructing a topology matrix and solving for the repetitions vector which has

the characteristic that, when multiplied by the topology matrix, produces a zero vector [5].

The schedule has a great impact on code size. Bhattacharyya, et al. illustrates this concept as

shown in figure 2 [4]. Several valid schedules exist for this SDF graph.  One such schedule is

ABCBCCC. In this schedule, all code is in-lined, maximizing the code size.  This schedule can be

rearranged to group the same actor in repetitive firings called schedule loops, thus approaching

minimal code size. If each actor appears only once in the schedule loop, as in schedules 2 and 3 of

A B C
w x y z

Fig. 1. An Example of a Simple SDF Graph 
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figure 2, no code duplication occurs. These schedules are called single appearance schedules,

which result in optimally compact implementation of the SDF graph. In DSP architectures, loops

have very low overhead and therefore can be used with virtually no increase in execution time.

The schedule also has a great impact on data buffer size [4]. For example, schedule 2 in figure

2 requires a buffer size of 40 whereas schedule 3 requires a buffer size of 60. This graph is simple.

Generally, SDF graphs are more complex and therefore, buffer savings are more significant.

Typically, to obtain the smallest memory requirements, the code size should be minimized as a

higher priority than buffer size [4]. This strategy will be used to optimize the beamformer.

When more than a single processor is used, additional optimization can be realized while

mapping the vertices onto multiple processors. One such technique uses clustering [2]. In

clustering, the SDF graph is evaluated for natural grouping of vertices in a manual or automated

process to produce hierarchical subgraphs. The subgraphs are scheduled using uniprocessor SDF

schedulers. Clustering mitigates the problem of fully expanded graphs exploding in size. An

additional problem with clustering SDF graphs is that the resulting graph can deadlock. Pino et al.

developed the SDF composition theorem that when all conditions are met guarantees the

clustered graph will not deadlock. They also demonstrated up to two orders of magnitude

increase in execution speed and two orders of magnitude decrease in code size when using this

technique [2]. Clustering will be exploited in the beamformer design.

Execution speed can also be improved by reducing interprocessor communication (IPC)

overhead.  There are three scheduling strategies: fully-static (FS), self-timed (ST), and ordered

transactions (OT) [3]. All three scheduling strategies perform the actor assignments and specify

the order of firings at compile time. In FS schedules, the exact order and firing times of each actor

A B C
20 10 20 10

a) SDF Graph

1.   ABCBCCC
2.  A(2B(2C))
3.  A(2B)(4C)
4.  A(2BC)(2C)

b) Periodic Schedules

1.  50
2.  40
3.  60
4.  50

c) Buffer Sizes

Fig. 2. Periodic Schedule Listing for SDF Graph
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are determined at compile time. This minimizes the IPC overhead. However, execution times must

be deterministic and exact. Current DSP architectures use cache that may induce variability in

execution times. Therefore, worse case execution time estimates must be used. In addition, the FS

schedule is inflexible to system timing changes. In ST schedules, we retain the processor

assignment and actor ordering used by the FS schedule. Instead of using exact firing times,

processors determine when to fire an actor by synchronizing with other processors at run-time.

This increases IPC overhead but is tolerant of variable task execution times. OT scheduling is an

intermediate approach. The OT method determines the order in which the processors should

communicate but does not determine exact times to communicate. The order is enforced at run-

time. The IPC overhead is slightly increased from the FS schedule but is decreased from the ST

schedule. However, this technique retains the flexibility of the ST schedule. The OT scheduling

technique will be used in the beamformer implementation since it matches the data independent

execution time and need for flexibility in changing beamformer parameters.

IV.  Time Delay Interpolation Beamforming

The beamformer function is essentially a spatial filter that processes discrete signals from a

number of sensors in order to produce a directionally-sensitive response.  The individual sensors

are distributed in space to provide sensitivity to sound arriving over the intended field of view.

Near field conditions of spherical wave propagation are assumed. The signals arriving from the

desired look angle are reinforced by imposing time delays on each sensor so that the signal formed

by the summation of all sensor signals is maximized (figure 3). This is referred to as steering the
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Fig. 3. Time Delay Imposed for Time-of-Arrival Compensation for Beamformer Function
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beam.  The resulting beam enhances the signal level of sound arriving from the intended angle

compared to the background noise level.  In modern systems, the time delays are implemented

with digital signal processing.  However, the sampling rate required to adequately describe the

temporal signal may be too coarse for the resolution of the time delays needed to accurately steer

the beam to the desired direction. If the system were designed such that the signals from all

sensors were sampled at the higher rate required by the spatial requirement, a severe penalty in the

number of processors and the speed of operation would result.  The concept of interpolation

beamforming is used to mitigate the spatial sampling requirement and control the amount of

processing needed to form accurately steered beams [1].

In interpolation beamforming, the signals from each sensor is sampled at or above the Nyquist

rate dictated by the bandwidth of the signal (figure 4).   These signals are augmented with inter-

sample zeroes (zero padding) to effectively increase the input sample rate.  Next, a low pass filter

is used to interpolate between the real samples, thus creating an accurate representation of the

input signal now sampled at the higher frequency.  Typically, this low pass filter is implemented as

a finite impulse response (FIR) digital filter [6].  Following summation of the individual sensor

signals, the output is decimated to return to the original sampling rate.  In actual practice, only the

non-zero samples are multiplied by the filter coefficients. In addition, the filter coefficients

selected for a given sensor signal are chosen to impose the relative delay needed between this
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sensor signal and the others in the array to steer the beam in the intended direction.  This results in

computational efficiency while maintaining the accuracy of the formed beam.

Further efficiencies can be achieved by analyzing the point at which the interpolation is

invoked. In systems forming a large number of beams, where the number of beams is larger than

the number of sensors, it has been demonstrated that interpolation of each sensor signal is most

efficient.  However, if the number of beams is less than the number of sensors, it can be more

efficient to zero pad the input signals, sum the signals for each beam and then interpolate the

resulting beam signals [6].  Application of this architecture is limited to those systems in which

imposed time delays are not altered during the time that the signals are observed.  In cases where

the time delays are modified as the signals are received, the time delays must be imposed on the

individual sensors and the interpolation/filtering executed at the sensor level.  The beamformer we

are implementing operates under this constraint.

In acoustic systems using very high frequencies, the bandwidth of the information is a small

percentage of the operating frequency.  If first order (Nyquist) sampling were used to define the

high frequency signal, the information bandwidth would be highly oversampled.  Therefore,

additional efficiencies in sampling rates can be achieved by employing a sampling technique that

preserves the information in the envelope of the signal by adequately oversampling that

bandwidth.  This technique, called second order or quadrature sampling, has been extensively

used in this context [7]. This technique down-converts the bandpass signal to complex baseband,

producing a real and imaginary sampled signal at a combined sampling rate that is much less than

that required to retain the high frequency waveform.  By performing a precise sampling process,

this procedure characterizes a bandpass signal, x(t), with uniformly spaced samples of its

quadrature components. Therefore, x(t) can be expressed as

x(t) = xI(t) cos(2πf0t) – xQ(t) sin(2πf0t) (1)

where xI(t) and xQ(t) denote the in-phase and quadrature components of x(t) and f0 denotes the

center of the passband [1]. This sampling will be used in the beamformer for efficiency.
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V.  Project Implementation

In this project, two possible beamformer architectures will be evaluated. The primary

difference between the two architectures centers on the method of mapping computations onto

processors. The two architectures are shown in figure 5. In the first architecture (figure 5a), data

from all sensors are input into each processor. Each processor then imposes the appropriate time

delays, filters and sums the data, and outputs a single complex beam. In this architecture, the

number of processors required equals the total number of beams to be formed. In the second

architecture (figure 5b), data from one or more sensors are input into each processor. Each

processor then imposes the appropriate time delays for all beams produced, filters and sums the

data. The output of each processor is a partial beam. The complete beam set is fully formed in the

last processor in the chain. In this architecture, the number of processors required equals the

number of sensors in the array divided by the number of sensors input to each processor. Clearly,

the architecture that yields the least number of processors is the most efficient implementation.

The basis of computation is the Analog Devices Sharc DSP. The Sharc is designed for parallel

processing with six high speed communication channels using independent DMA controllers per

channel. In addition, this processor has one megabit of on-chip memory. Due to space limitations,

no more than 160 processors can be allocated to form the requisite 160 beams using 32 sensors

per beam. The processors will be spread over multiple boards, each housing 18 Sharcs per board.

In this project, the two architectures described above will be modeled using SDF domain in

Ptolemy. Modeling will focus on the most intense portion of the problem: the interpolation
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a)  Each processor forms one beam
No. Processors = M Beams

b)  Each processor forms full set of partial beams
No. Processors = No. sensors/k

Fig. 5. Two  Beamformer Architectures To Be Evaluated
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filtering/decimation/summation structure. Optimization techniques described in this paper will be

used. The execution time of each architecture will be measured and bottlenecks will be identified.

Based upon the modeling, the processor count will be evaluated. The optimal architecture will be

selected where the criterion for optimality is minimization of the number of processors while

achieving the required throughput. For this architecture, Ptolemy will be used to generate the C

source code and where bottlenecks occur, assembly language will be written.

VI.  Anticipated Intellectual Reward

Several benefits will be derived from this research.  For example, efficiency of the candidate

algorithms will be evaluated by quantitative metrics rather than by the ad hoc approach taken in

the past. In addition, innovative processor topologies may evolve from the modeling process,

based upon the insight into the potential parallelism evident in the SDF graph. More explicitly,

final implementation of the system onto processors will be enhanced through this process. Finally,

future designs can be based on this design approach, leveraging the knowledge and insight gained.
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