
Optimal Architectures for Massively Parallel Implementation of
Hard Real-time Beamformers

Karen P. Watkins
Applied Research Laboratories, The University of Texas at Austin, Austin, TX

E-mail: watkins@arlut.utexas.edu

Abstract

This paper reports an experimental analysis of real-
time computational architectures applied to digital time
delay beamformation. The goal of this research has been
to identify the most efficient multiprocessor utilization for
a prototypical beamformer by modeling the signal
processing and applying selected multiprocessor
scheduling algorithms. A Synchronous Dataflow (SDF)
domain model was used to implement the most
computationally intense core of the beamformer in
Ptolemy. In order to evaluate multiprocessor scheduling
performance, four automated scheduling strategies were
applied: declustering, a classical list scheduler, dynamic-
level scheduler, and hierarchical scheduler. A manual
heuristic schedule was also postulated and evaluated.
Several key metrics were applied in judging optimality. It
is demonstrated that the hierarchical scheduler holds
measurable advantage over the other algorithms
considered, including the manual method. An analysis of
the underlying performance drivers is given.

1 Introduction

Computationally intense spatial filtering called
beamforming is central to acoustic imaging. Typically, in
order to achieve an update rate similar to slow scan
television, beamforming must operate in real-time. The
real-time nature of beamforming leads to parallel digital
signal processing for state-of-the-art applications in
diverse fields such as seismic exploration, aeroacoustic
measurements, ultrasonic medical imaging, and underwater
acoustics [1].

Often, these applications require a large number of
processors running algorithms in parallel. Efficiency in
memory size, processor count, and execution time is
critical to achieving an optimal system solution. Digital
signal processor (DSP) attributes such as on-chip memory,
instruction cache, and direct memory access (DMA) can
be exploited to achieve optimization.

Modeling and synthesis of the system, using dataflow
graphs, can actualize these efficiencies. In particular,
Synchronous Dataflow (SDF) is appropriate for systems
exhibiting hard real-time data-independent control flow,
such as beamformers. The primary goal of this research
has been to identify the most efficient multiprocessor
utilization for a prototypical beamformer by modeling the
signal processing and applying selected multiprocessor
scheduling algorithms. Here, we determine the optimal
scheduling for the process where the criterion for
optimality is minimization of the required cycle counts
with a constrained number of processors.

In this paper, we first review SDF theory and
multiprocessor scheduling algorithms. A prototypical
beamformer problem is defined along with its
corresponding SDF model. We invoke selected
multiprocessor scheduling algorithms in order to find an
optimized solution. The results are presented along with an
analysis of the performance of the algorithms.

2 Optimization through SDF Modeling

SDF is a natural representation for signal processing
algorithms, such as beamforming, that are amenable to
compile time scheduling techniques [2] [3]. In a dataflow
graph, computations in an algorithm are represented by
nodes, called actors. These actors are connected by arcs
which pass data in one direction between actors. An actor
can only be fired (executed) when a predefined number of
data values, called tokens, appear at its inputs. The tokens
are placed into first-in first-out (FIFO) queues, called
edges. In SDF, when an actor is fired, it consumes and
produces a fixed number of tokens. Since these parameters
are known at compile-time, algorithms represented by SDF
can be statically scheduled. By scheduling, we mean the
task of assigning actors in the dataflow graph to
processors, ordering execution of these actors, and
determining when an actor fires so that all data precedence
constraints are met [3]. A valid schedule is finite and fires
each actor at least once, does not deadlock, and produces
no net change in the number of tokens queued on each
edge [4].

The schedule has a great impact on code size.
Bhattacharyya, et al. illustrates this concept as shown in
Figure 1 [4]. This figure lists several valid schedules. One

such schedule is ABCBCCC. In this schedule, all code is
in-lined, maximizing the code size. This schedule can be
rearranged to group the same actor in repetitive firings
called schedule loops, thus approaching minimal code size.
If each actor appears only once in the schedule, then no
code duplication occurs. These schedules are called single
loop schedules, which result in optimal code size.

When more than a single processor is used, additional
optimization can be realized while mapping the nodes onto
multiple processors. Prior research into optimal
multiprocessor schedulers has produced several algorithms
including declustering (DC), a classic list scheduler based
on Hu’s work (HU) [5], dynamic-level scheduling (DLS),
and the hierarchical scheduling algorithm. The DC
algorithm targets systems using homogeneous architectures
that communicate through global shared memory. This is
a multi-pass algorithm that attempts to minimize
interprocessor communication (IPC) cost by scheduling all
communications as well as all computations [6]. The HU
algorithm assigns each node a priority and places the
nodes in a list, sorted in order of decreasing priority. A
global time clock regulates the scheduling process by
assigning nodes onto processors as they become available.
This algorithm does not consider IPC costs [7]. The DLS
algorithm modifies the HU algorithm by eliminating the
global clock in an effort to reduce IPC costs. This allows
the algorithm to consider all processors, including
processors still “busy”, as candidates for scheduling at
each step [7].

The hierarchical scheduling algorithm uses a technique
called clustering to optimize the schedule [2]. In

clustering, the SDF graph is evaluated for natural grouping
of nodes in a manual or automated process to produce
hierarchical subgraphs. The clustered subgraphs are then

scheduled onto single processors using uniprocessor SDF
schedulers. Clustering mitigates the problem of fully
expanded graphs exploding in size but can introduce
deadlock during this process. This algorithm guarantees
that the clustered graph will not deadlock by applying the
SDF Composition Theorem [2].

3 Time Delay Interpolation Beamforming

A time delay interpolation beamformer is a spatial filter
that processes discrete signals from a number of near-field
sensors in order to produce a directionally-sensitive
response. The signals arriving from the desired look angle
are reinforced by imposing time delays on each sensor so
that the signal formed by the summation of all sensor
signals is maximized. In modern systems, the time delays
are implemented with digital signal processing. However,
the sampling rate required to describe the temporal signal
adequately may be too coarse for the resolution of the time
delays needed to point the beam to the desired direction
accurately. If the system were designed such that the
signals from all sensors were sampled at the higher rate
required by the spatial requirement, a severe penalty in the
number of processors and the speed of operation would
result. The concept of interpolation beamforming is used
to mitigate the spatial sampling requirement and control
the amount of processing needed to form accurately
pointed beams [1].

In interpolation beamforming, the signals from each
sensor are sampled at or above the Nyquist rate dictated by
the bandwidth of the signal (Figure 2). These signals are

A B C
20 10 20 10

a) SDF Graph

1. ABCBCCC
2. A(2B(2C))
3. A(2B)(4C)
4. A(2BC)(2C)

b) Periodic Schedules

Figure 1. Periodic Schedule Listing for SDF Graph

Zero
Pad

Interpolation
(Time Delay) Decimate

Fs Fs * m Fs * m Fs

Real
(E1)

Imag
(E1)

X
Zero
Pad

Interpolation
(Time Delay) Decimate

τ

Complex
Multiply Complex Sum

E1

E2
En

Beam
OutputΣ

Figure 2. Tim e Delay Interpolation Beamform ing w ith Comp lex Samples

augmented with inter-sample zeroes (zero padding) to
increase the effective input sample rate. Next, a lowpass
finite impulse response (FIR) filter is used to interpolate
between the samples, thus creating an accurate
representation of the input signal now sampled at the
higher frequency [8]. Following summation of the
individual sensor signals, the output is decimated to return
to the original sampling rate. In practice, only the non-
zero samples are multiplied. In addition, the filter
coefficients selected for a given sensor signal are chosen to
impose the relative delay needed between this sensor and
the others in the array to point the beam in the intended
direction.

In acoustic systems using very high frequencies, the
bandwidth of the information is a small percentage of the
operating frequency. If first order (Nyquist) sampling were
used to define the high frequency signal, the information
bandwidth would be highly over sampled. Therefore,
additional efficiencies in sampling rates can be achieved
by employing a sampling technique that reserves the
information in the envelope of the signal by adequately
oversampling that bandwidth. This technique, called
second or quadrature sampling, has been extensively used
in this context [9]. This technique down converts the
bandpass signal to complex baseband, producing a real
and imaginary sampled signal at a combined sampling rate
that is much less than that required to retain the high
frequency information.

4 SDF Modeling of the Beamformer

In this research, the beam formation described above
was modeled in the SDF domain using Ptolemy. Ptolemy
is a hierarchical synthesizing environment in which basic
computational components are defined as stars. The
hierarchy of a system can then be modeled by grouping
stars into galaxies.

The prototypical system under study produces 160
beams using 32 sensor inputs per beam. The formation of
four beams was modeled and verified (Figure 3). This
nucleus of 4 beams must be replicated 40 times to produce
the full system.

Simulated sensor input data were generated using
MATLAB. In order to simulate the system sampling, real
and imaginary data points were generated and read from
files into Ptolemy during simulation. The data was
distributed in the model as inputs to four sets of galaxies
and stars, forming beams one through four. In each set, the
core galaxy was replicated 32 times. This galaxy consisted
of two multiply-accumulate (MAC) stars and one complex
multiply star. Each MAC star executed an eight-tap FIR
filter. Previously computed coefficients for each FIR filter
were used to impart the required time delay. The output of
each galaxy set was a partially formed beam. The fully-
formed beam was produced by summing all partial-beam
real and imaginary data samples. This model was validated
by comparing the beam output sample points to a
conventional equation-based model using MATLAB.

Beam Output

Imag data

Real data

Beam 1

Beam 2

Beam 3

Beam 4

Simulated
Sensor Data

Real data

Imag data

Real data

Imag data

Real data

Imag data

Partially Formed Beam

complexMult2

mac

mac

Real sensor data

Imaginary sensor
data

Real partial
beam

Imaginary partial
beam

Figure 3. SDF Beam former Model Created in Ptolemy

5 Code Generation Modeling and Results

The SDF model was translated into the Code
Generation in C (CGC) domain of Ptolemy. Using this
domain, the multiprocessor scheduling algorithms
described earlier were invoked. For this example, the
number of processors was constrained to four. Execution
times for each node were input to the CGC blocks to
achieve realistic schedules. Here, assembly code execution
times were entered into the model for the processor of
interest, the Analog Devices SHARC DSP.

The CGC model was exercised several times invoking
various multiprocessor scheduling algorithms, namely,
DC, DLS, HU, and hierarchical. In addition, a manual
scheduling method was tested. This method confined the
formation of one beam to one processor. Each schedule
was evaluated for total execution time, remaining free
cycles, and processor utilization.

The schedules for each algorithm are shown as
summary Gantt charts in Figure 4, with the exception of
DC. The DLS and HU algorithms produced nearly
identical schedules. In both algorithms, one processor was
used to calculate one of the complex components of the
FIR filter for 16 sensors for all four beams. Both
algorithms then assigned a mixture of complex multiplies
and additions across all processors to form the four
complete beams. Each algorithm apportioned the mixture
differently.

The hierarchical schedule clustered the two MAC stars
and the complex multiply star shown as a galaxy in Figure

3. Each processor executed this clustered galaxy for eight
of the 32 sensor signals used to form a beam, for all four
beams. Finally, each processor performed two separate
addition functions. This schedule has the benefit that all
code is identical across all processors. Therefore,
incremental implementation and testing can be executed on
a single processor.

In the manual schedule, for a single beam, each
processor calculated all real components of the FIR filter,
followed by all imaginary components. It then concluded
by calculating the complex multiply and the additions.
This schedule shares the benefit that all code is identical
on all processors.

The execution throughput, or makespan, is by far the
most valued metric in this analysis. A low makespan value
indicates high performance. The results for all algorithms
are shown in Table 1. As indicated, the DC algorithm
produced the highest makespan value, far exceeding all
other schedules. In cases of excessive communication
costs, this algorithm will only split up tasks if it can reduce
the IPC costs. In the limit, this leads to scheduling the
entire structure onto a single processor [6]. Indeed, the
beamformer prototype induced this solution and the
algorithm assigned all nodes to a single processor, which
produced unacceptable load sharing. Therefore, this
algorithm will not be discussed further. The DLS and HU
schedules produced identical makespan values and were
also the highest values of the remaining four. The manual
schedule produced an intermediate value. The hierarchical
schedule produced the optimal makespan.

In a real time system, the repetition time of the

DSP
0
1
2
3

0
1
2
3

0
1
2
3

Cluster Definition

0
1
2
3

where: ptBmn.macRe = real MAC output for beam n
ptBmn.macIm = imaginary MAC output for beam n
nC-k = complex multiply for beam n for k data samples
An = addition node n

Figure 4. Schedule Results

DL Schedule

HU Schedule

HIERARCHICAL Schedule

MANUAL Schedule

ptBm4.macRe (16x) ptBm3.macRe (16x) ptBm2.macRe (16x) ptBm.macRe (16x) 4C-8 A7 C-
5

2C-8 3C-8 A5 A1

ptBm4.macIm (16x) ptBm3.macIm (16x) ptBm2.macIm (16x) ptBm.macIm (16x) 4C-8 A8 C-
5

2C-8 3C-8 A6

ptBm4.macRe (16x) ptBm3.macRe (16x) ptBm2.macRe (16x) ptBm.macRe (16x) 4C-8 C-11 2C-8 3C-8 A3

ptBm4.macIm (16x) ptBm3.macIm (16x) ptBm2.macIm (16x) ptBm.macIm (16x) 4C-8 C-11 2C-8 3C-8 A4

A2

ptBm4.macRe (16x)

ptBm4.macIm (16x)

ptBm4.macRe (16x)

ptBm4.macIm (16x)

ptBm3.macRe (16x)

ptBm3.macIm (16x)

ptBm3.macRe (16x)

ptBm3.macIm (16x)

ptBm2.macRe (16x)

ptBm2.macIm (16x)

ptBm2.macIm (16x)

ptBm2.macRe (16x)

ptBm.macRe (16x)

ptBm.macIm (16x)

ptBm.macRe (16x)

ptBm.macIm (16x)

4C-8 A8 C-
5

2C-8 3C-8 A6

4C-8

4C-8

4C-8

C-11

C-11

A7 C-
5

2C-8

2C-8

2C-8

3C-8

3C-8

3C-8

A4 A2

A3 A1

A5

ptBm4 (8x) ptBm3 (8x) ptBm2 (8x) ptBm (8x) A7 A3

ptBm4 (8x)

ptBm4 (8x)

ptBm4 (8x)

ptBm3 (8x)

ptBm3 (8x)

ptBm3 (8x)

ptBm2 (8x)

ptBm2 (8x)

ptBm2 (8x)

ptBm (8x)

ptBm (8x)

ptBm (8x)

A8 A4

A1 A5

A2 A6

ptBm4.macRe (32x) ptBm4.macIm (32x) 4C-32 A8 A7

ptBm4.macRe (32x)

ptBm4.macRe (32x)

ptBm4.macRe (32x)

ptBm3.macIm (32x)

ptBm2.macIm (32x)

ptBm.macIm (32x)

3C-32

2C-32

C-32

A6 A5

A4 A3

A2 A1

ptBm4.macRe ptBm4.macIm ptBm4.C

complete processing epoch translates to a fixed upper limit
on the number of processor cycles available for execution.
As an indicator of efficiency, the metric of remaining free
cycles has been used to determine if the required
throughput has been met. Large values of remaining free
cycles are considered desirable. The number of remaining
free cycles is shown in Table 1 with processor utilization
also listed. Again the hierarchical schedule is shown to be
most efficient. The differences in the remaining free
cycles are small across all algorithms. However, since the
processor utilization is near maximum, schedule
optimization is even more crucial to achieving the required
throughput.

6 Analysis and Conclusions

The hierarchical scheduling algorithm produced the
optimal schedule for the real-time interpolation
beamformer, producing the fastest throughput and the
largest number of free cycles. It also produced a schedule
in which identical code resides on all processors. Clearly,
the results are attributable to the strategy embodied in the
algorithm. Examining the details of the scheduling output,
this method first clustered the multiply-accumulate pair
with its corresponding complex multiply. It then scheduled
this cluster onto a single processor. This permitted the
algorithm to use uniprocessor schedulers that provided
further optimization such as producing a single appearance
schedule. By clustering the core computational nodes in
the model, namely the MAC stars and the complex
multiply stars, this algorithm permitted efficiencies not
available to the other algorithms. By clustering these
nodes, the algorithm internalized any communications
between these nodes, thus eliminating the associated
overhead. This is analogous to having on-chip memory in
the DSP where intermediate values are held in internal
registers that become immediately available for following
computations. The net effect was a shorter execution time,
as indicated by the simulation results.

The performance of the DLS and HU algorithms is tied
to the mechanism by which nodes are assigned to
processors. Nodes are assigned a priority that determines
order of execution placed in an ordered list. In HU, nodes

are assigned to processors for execution as they become
ready. The DLS algorithm considers all processors and
includes weighting for IPC costs and current processor
task load. Notwithstanding these differences, both
algorithms are slaved to this prioritized list, and therefore
suffer the resulting inefficiencies.

The comparison of scheduling algorithms in a severely
time-constrained application produced valuable increases
in throughput. The optimal schedule reported here has
been shown to have higher performance than an intuitive
ad hoc manual method. Indeed, through this research, the
goal of producing a schedule with a constrained number of
processors and minimal cycle count has been met. In
addition, the resulting schedules permit insight into the
processing flow, parallelism, and bottlenecks that may not
be apparent on the surface.

In the broader view, by modeling a system prior to
implementation, with attention to execution times and
accurate IPC costs, early insight into final system topology
and dataflow is achievable. Modeling provides optimal
schedules derived from numerical analysis that cannot be
achieved through manual methods.

References

1. R. A. Mucci, “A Comparison of Efficient Beamforming
Algorithms”, IEEE Trans. on Acoust., Speech, Signal
Processing, vol. ASSP-32, no. 3, pp. 548-557, June 1984.

2. J. L. Pino, S. Bhattacharyya, and E. A. Lee, A Hierarchical
Multiprocessor Scheduling Framework for Synchronous
Dataflow Graphs, UCB/ERL M95/36, May 30, 1995.

3. S. Sriram and E. A. Lee, “Determining the Order of Processor
Transactions in Statically Scheduled Multiprocessors”,
Journal of VLSI Signal Processing, vol. 15, no. 3, pp. 207-
220, Mar. 1997.

4. S. Bhattacharyya, P. Murthy, and E. A. Lee, “Optimized
Software Synthesis for Synchronous Dataflow”, Proc. of
Application Specific Array Processors ’97 Conference,
Zurich, Switzerland, July 1997.

5. T. C. Hu, “Parallel Sequencing and Assembly Line Problems”,
Oper. Research, vol. 9, pp. 841-848, Nov. 1961.

6. G. Sih and E. A. Lee, “Declustering: A New Multiprocessor
Scheduling Technique”, IEEE Trans. on Parallel and
Distributed Systems, vol. 4, no. 6, pp. 625-637, Jun. 1993.

7. G. Sih and E. A. Lee, “A Compile-Time Scheduling Heuristic
for Interconnection-Constrained Heterogeneous Processor
Architectures”, IEEE Trans. on Parallel and Distributed
Systems, vol. 4, no. 2, pp. 175-187, Feb. 1993.

8. R. G. Pridham and R. A. Mucci, “A Novel Approach to
Digital Beamforming”, Journal of Acoust. Soc. Amer., vol. 63,
no. 2, pp. 425-434, February 1978.

9. D. C. Horvat, J. S. Bird, and M. M. Goulding, “True Time-
Delay Bandpass Beamforming”, IEEE Journal of Oceanic
Engineering, vol. 17, no. 2, pp. 185-192, April 1992.

Schedule
Algorithm

Makespan
(# cycles)

Remaining Free
Cycles

Processor
Utilization

DC 4929
DLS 1234 56 95.66%
HU 1234 56 95.66%
Hierarchical 1222 68 94.73%
Manual 1228 62 95.19%

Table 1. Resulting Performance Metrics

