
Binary-to-Binary Translation

Final Report

University of Texas at Austin

Department of Electrical and Computer
Engineering

Juan Rubio

Wade Schwartzkopf

May 8, 1998

2

I. INTRODUCTION ..4

II. HISTORY..4

III. DIFFERENCES BETWEEN THE C5X AND C54X PROCESSORS5

IV. INSTRUCTION TRANSLATION ..6

A. SHIFTING ADDRESSES ...7

B. PIPELINING ...8

C. CONTEXT OF REPEAT INSTRUCTIONS ..8

D. “UNTRANSLATABLE” INSTRUCTIONS..8

V. COMPUTER IMPLEMENTATION..9

VI. CONCLUSIONS..10

VII. REFERENCES ..11

3

Binary-to-Binary Translation

Juan Rubio and Wade Schwartzkopf

University of Texas at Austin

Department of Electrical and Computer Engineering

Abstract – There is much code presently written for the Texas Instruments TMS320C5x

line of processors. However, the Texas Instruments TMS320C54x processors have

surpassed the C5x line in many ways. It would be very useful if one could take the

programs written on a C5x and use them on a C54x processor. In this way, one could

take advantage of the capabilities of the newer processor without having to spend time

and money redeveloping programs already existing on the older platform. But this is not

possible because C5x binaries are incompatible with the C54x. In order to use C5x

programs on a C54x processor, those programs now must be rewritten. It was our goal

to develop the framework for a binary-to-binary translator that can automatically

convert binary code from the C5x to the C54x. We have now created a translator that

can translate a useful subset of C5x code into C54x code that accurately emulates the

behavior of the original code. More importantly, we have built this translator so that it is

flexible enough so that other can easily add translations for other instructions and

structure of functions.

4

I. Introduction

Binary translation is the process of directly converting machine code from one processor

into code that runs on another. This is often useful when one wants to transfer code from

an old machine to a newer one. This is the case with the C5x and C54x processors. The

C5x is commonly used, but the C54x family is newer, faster and has more capabilities

than the C5x family, especially in the area of wireless communications. Therefore, it

would be very useful if one could take the programs running on C5x processors and

translate them to use them on the newer C54x processors. If one could do this, he could

take advantages of the capabilities of a newer processor without having to rewrite his

software.

In this paper, we will briefly review the history of binary translation in Section II. In

section III, we will examine the differences between the two processors. We will then

discuss the interesting issues we encountered in our binary translation project in Section

IV. Section V will cover the computer implementation of our translator, and in Section

VI, we will state what we have accomplished and why we believe that this is important.

II. History

One of the first attempts at binary translation was Hewlett Packard’s translator for the

HP-3000 in 1987 [1, 2, 3]. This translator translated code from the HP-3000 into code

for the HP-PA. The code for the HP3000 was fairly simple, and typically there was only

one file to translate.

As computers became more complicated so did binary translation. In modern

computers, it is common to have several programs that work together. Timing

intricacies, parallel processing, exception handling, interactions with operating systems,

5

and read-write ordering problems have also made the task of binary translation more

difficult. The first major successful binary translator to deal with these problems was

Digital’s VEST (VAX Environment Software Translator) that translated VAX code into

code for their new Alpha AXP computers [1]. VEST was completed in 1993, and Digital

has since proven themselves the leader in the area of binary translation. Since VEST,

Digital has built Freeport express, which translates from SPARC to Alpha, and FX!32,

which translates x86 to Alpha.

Many other notable attempts at binary translation have also been made [3], but to date,

there have been few if any successful attempts at binary translation for digital signal

processors. Translation in digital signal processors is a special challenge because of all

the instructions that are architecturally specific. In general purpose processors,

translation can be much simpler. Code can often be written for these processors without

knowing anything about the architecture of the processors. There is no need to translate

any architectural differences. But digital signal processors often have registers that are

allocated for a specific purpose. There are registers for shifting, registers for special

addressing modes, registers for storing products, as well as others. Instructions on digital

signal processors often refer to these specific registers and other architectural structures.

In translation, all these architectural differences must be simulated if they do not exist in

the target processor.

III. Differences between the C5x and C54x processors

In order to understand how to translate code between these two processors, one must first

examine the differences between them. There are a number of differences between these

two processors both architecturally and in the instruction sets of the two processors.

6

The instruction sets of the C5x and C54x are vastly different. In fact, in these two

instruction sets, there are no instructions that use the same opcode to accomplish the

same function. There are only a few instructions that even keep the same assembly

mnemonics. Thus, one cannot just disassemble a C5x program and reassemble it with a

C54x assembler.

There are also a number of architectural differences between the two processors. One

significant difference between the two processors is their registers. There are a number

of registers in the C5x that do not exist in the C54x. Some registers in the C5x (the

accumulators, TREG0, etc.) can be mapped to registers in the C54x; that is, we can use

registers in the C54x to simulate the behavior of some of the C5x registers. However, for

some registers (PREG0, BMAR, DBRM), no register in the C54x can emulate their

behavior. These registers must be simulated in the memory of the C54x.

There are other architectural differences between the C5x and C54x as well. The C5x

has a 4-stage pipeline. The C54x has a 6-stage pipeline. The multipliers in the two

processors are very different as well. The C5x has a product register (PREG0) that holds

the last product calculated. Such a register does not exist in the C54x. It is one of the

registers that must be simulated in the memory of the C54x. There are also differences in

the ALU’s of the two processors. All these differences must be accounted for if one is to

create an accurate translation from C5x code to C54x code.

IV. Instruction translation

It is important to note that translation can take place on many levels. There are

translators that look at the structure of code and the relationships between instructions

and translate using this knowledge [1]. Such translators can make useful optimizations in

the code, but for the purposes of this project, most of the translation is done by looking at

7

the individual C5x instructions and replacing those instructions with an individual

instruction or a set of instructions that emulate the behavior of the C5x instruction. (The

notable exception to this is the handling of the repeat (RPT) instruction, which will be

discussed later.)

During translation each source instruction falls into one of four categories. Either

1) Its translation is a single instruction with the same number of words and the same

number of cycles

2) Its translation is a single instruction with the same number of words, but a different

number of cycles

3) Its translation is a single instruction with a different number of words and a different

number of cycles

4) Its translation is a series of instructions.

Fortunately, many of the instructions fall into first category, and only a couple fall into

fourth category. The more instructions we can translate whose word length and

execution time are equivalent to that of their translation, the less we will have to worry

about timing and memory constraints.

Below some important issues are described that must be dealt with for an accurate

instruction translation from the C5x to the C54x.

A. Shifting addresses

Because we have translated some instructions from a single word to double words and

sometimes a single instruction to multiple instructions, the length of our code and the

positions of instructions will change in the translated code. Because of this, the addresses

8

in branches and repeat instructions must be changed to account for this. For instructions

with absolute addresses into program memory (branch unconditionally (B), branch

conditionally (BCND), and repeat block (RPTB)), these addresses must be calculated on

a second pass through the code. Branches with variable targets (BACC) cause greater

problems, but we have not dealt with them here. (Translating branches with variable

targets is a very difficult problem and still an open area of research in binary translation.

Target addresses generally must be calculated at run time rather than translation time.)

B. Pipelining

One problem that must be considered during binary translation is the affects of the

pipelines in the processors. The C5x has a 4-stage pipeline, and the C54x has a 6-stage

pipeline. These could affect the behavior of the delayed branches and other delayed

instructions. This was a concern when we initially looked into C5x to C54x translation.

However, Texas Instruments has created the pipelines so that in both processors two

words are fetched and executed after a delayed branch.

C. Context of repeat instructions

The translator currently looks at whether or not a particular instruction is preceded by a

repeat instruction. This is important because some instructions change their behavior

when preceded by a repeat instruction. Thus, they will have different translations

depending on whether or not they are preceded by a repeat instruction.

D. “Untranslatable” instructions

There are instructions in the C5x whose functionality does not exist in the C54x. These

are instructions like the table read (TBLR) instruction, which references program

memory with a variable address (in the TBLR instruction program memory is referenced

9

with the address in the accumulator). There is no instruction in the C54x instruction set

that can reference program memory with anything but absolute addressing. This means

that, in the C54x, addresses into program memory generally cannot be calculated at run

time like they can in the C5x, but rather must be determined at the time the program is

written.

In order to work around this problem of “untranslatable” instructions, we have

translated these instructions into series of instructions that are self-modifying. We use a

C54x instruction that reads from a location in program memory addressed by an absolute

operand. We then write over this absolute operand with the contents of the lower word of

the accumulator and then execute the instruction. By this method of self-modifying code,

we can emulate the behavior of TBLR and other similar instructions such as block move

(BLDP) and table write (TBLW).

V. Computer Implementation

The translation program is written entirely in ANSI C and was tested under Solaris 4.2

and Windows 95. It reads a standard ASCII HEX file. The translator is implemented

using a table of templates indexed by the corresponding opcode, and a set of eight parsing

functions. If an instruction is found in the table, the translator replaces the instruction

with the corresponding output code that the table has for that instruction. If the

instruction is not found in the table or translation is not possible for some other reason,

the translator delivers a message that is intended to help the user translate the code using

a different methodology. This table look-up algorithm is simple and runs quickly.

Running sample code on a Pentium II processor, we translated 40,000 instructions per

second.

10

The translator then returns output code in C54x assembly. This is so that the user can

make any changes he feels necessary to the code. This is very useful when there has been

a section of code that the translator cannot translate. When unfamiliar code is

encountered, the translator will mark this section is so that user can translate these

sections manually. To get the final C54x binary, the user simply needs to assemble the

code.

VI. Conclusions

We have built a useful tool that translates a subset of C5x instructions into C54x

instructions. To the best of our knowledge, this is the first significant attempt at binary-

to-binary translation for two digital signal processors. Our translator can translate all the

instructions used by the C5x C compiler (see Table 1). We have also included several

other instructions which are not used by the C compiler, but which we thought were

important instructions. These instructions were the conditional branch (BCND, BC), the

multiply-accumulate (MAC), control bit set (SETC) and clear (CLRC), and the repeat

(RPT) instruction. In all, we have translated 64 of the 133 C5x instructions to run on the

C54x. This in itself is significant, but our greater contribution is the framework we have

built for translation between the two processors. Because the C code of the translator

uses a simple table to define translations, it is simple to add new instructions and modify

current ones.

ABS ADD ADDB ADDS ADRK AND ANDB APAC APL B BACC BANZ
BIT BLDD BSAR CALA CALL CMPL IN LACB LACT LAMM LAR LMMR
LT MAR MPY MPYU NEG NOP OPL OR ORB OUT PAC PSHD
RET RPTB SACB SACH SACL SAMM SAR SATH SATL SBB SBRK SFL
SFR SPAC SPH SPL SPLK SUB SUBS TBLR XOR XORB XPL

Table 1: Instructions use by the C5x compiler

11

VII. References

1. R. Sites, A. Chernoff, M. Kirk, M. Marks, and S. Robinson, “Binary Translation”,

Comm. of the ACM, vol. 36, pp. 69-81, Feb. 1993.

2. A. Bergh, K. Keilman, D. Magenheimer, and J. Miller, “HP 3000 Emulation on HP

Precision Architecture Computers,” Hewlett-Packard Journal, pp. 87-89, Dec. 1987.

3. C. Cifuentes and V. Malhotra, “Binary Translation: Static, Dynamic, Retargetable?”,

Proc. Int. Conf. on Software Maintenance, IEEE-CS Press, Monterey, CA, pp. 340-

349, Nov. 1996.

4. V. Zivojnovic, S. Tjiang, and H. Meyr, “Compiled Simulation of Programmable DSP

Architectures”, Proc. IEEE Workshop on VLSI Signal Processing, Osaka, Japan, pp.

187-196, Oct. 1995.

5. C. Mills, S. Ahalt, and J. Fowler, “Compiled Instruction Set Simulation”, Software

Practice and Experience, vol. 21(8), pp. 877-889, Aug. 1991.

6. V. Zivojnovic, S. Pees, and H. Meyr, “LISA – Machine Description Language and

Generic Machine Model for HW/SW Co-Design”, Proc. IEEE Workshop on VLSI

Signal Processing, San Francisco, California, pp. 127-136, Oct. 1996.

7. V. Zivojnovic and H. Meyr, “Compiled HW/SW Co-Simulation”, Proc. Design

Automation, Las Vegas, Nevada, pp. 690-695, June 1995.

8. C. Cifuentes and S. Sendall, “Specifying the Semantics of Machine Instructions”,

Technical Report 422, Department of Computer Science, The University of

Queensland, Dec. 1997.

