
Hardware/Software Partitioning of
Synchronous Dataflow Graphs

in
Ptolemy

Final Report
EE382 C – 9 : Embedded Software Systems

May 12, 1999

Heather Hanson
Gayathri Manikutty

Table of Contents

INTRODUCTION AND CONTEXT OF WORK.. 1

HARDWARE/SOFTWARE CO-DESIGN ... 1
PTOLEMY AND THE ADAPTIVE COMPUTING SYSTEMS DOMAIN .. 1

SUMMARY OF PREVIOUS WORK ... 2

THE BINARY PARTITIONING PROBLEM ... 2
GCLP ALGORITHM... 3

DESIGN OBJECTIVE ... 4

FORMAL MODELING ... 5

IMPLEMENTATION .. 5

PREPARING GCLP INPUT.. 5
PARTITIONING AND CO-SIMULATING .. 6

TEST APPLICATION AND RESULTS... 7

CONCLUSION ... 7

FUTURE WORK.. 7

REFERENCES.. 8

Abstract

We discuss an algorithm known as Global Criticality/Local Phase (GCLP) that partitions a
design into hardware and software, and present our implementation of the algorithm in a
design environment tool. This algorithm considers multiple resource constraints (for
example, physical layout area and time to execute) and iteratively maps sections of the
system into hardware and software modules until it reaches a solution that satisfies the
design constraints. The design tool consists of a graphical interface that guides the user
through the co-design, and the GCLP algorithm as a standalone C program. We tested the
tool and methodology with a two-channel filterbank design.

1

Introduction and Context of Work

Hardware/Software Co-design

Embedded processors for real-time systems must meet stringent requirements in terms of

performance and power dissipation while keeping the product cost low and development cycle

short. One successful method of designing embedded systems is exploiting the synergism of

hardware and software through their concurrent design. Franke and Purvis [1] define co-design

as “the system design process that combines the hardware and software perspectives from the

earliest stages to exploit flexibility and efficient allocation of function.” An important phase in

co-design is hardware/software partitioning, which maps each subtask of the application into

hardware or software and selects an appropriate implementation. The difficulty is to choose from

the many mapping and implementation alternatives available such that the overall design is

optimized, and to do so quickly.

Ptolemy and the Adaptive Computing Systems Domain

Ptolemy is a design environment developed at the University of California at Berkeley for

designing, modeling, simulating and prototyping heterogeneous systems [2]. Named after an

early Greek astronomer, Ptolemy’s component names are related to astronomy: stars, galaxies,

universes, etc. A star is the most basic block, and galaxies are clusters of stars. A universe is the

top level of a design, represented as a block diagram in Ptolemy’s graphical interface.

Ptolemy is organized into domains based on different computation models. In addition to

domains for simulation, such as synchronous dataflow (SDF), there are also domains for code

generation, such as the Code Generation in C (CGC) and VHDL (Very High Speed Integrated

Circuits Hardware Description Language) domains.

2

A recent Ptolemy development is the Adaptive Computing Systems (ACS) domain [3].

Applications modeled in this domain include signal processing and communication systems,

such as modems. They are typically implemented in a mixture of digital signal processors,

reconfigurable (adaptable) hardware such as field-programmable gate arrays (FPGAs)[4], and

software—a mixture well suited for co-design. In the ACS domain, stars have a single interface

and multiple implementations, allowing users to select different implementations without

modifying the system’s block diagram. Currently, a single universe in the ACS domain can

support only a single type of implementation (either hardware or software, but not both

simultaneously). Future releases will support multiple implementations, enabling users to

partition designs into hardware and software sections.

Summary of Previous Work

Partitioning a design into hardware and software has been the focus of ongoing research [5]

[6] [7]. Here, we present a brief overview of this partitioning problem and a heuristic to solve it.

The Binary Partitioning Problem

The SDF domain in Ptolemy translates the task-level description of an application into a

Directed Acyclic Graph (DAG) where each node represents a computation and the arcs represent

the data precedence between the nodes. The partitioning problem is to decide the mapping for

each node of the DAG—either into hardware or into software—and arrive at a schedule (the start

times for each node) such that the total area of nodes mapped to hardware is minimum. The

schedule is subject to latency constraints (the upper bound on the total application execution

time) and resource constraints (which includes availability of hardware and software resources,

namely program and data memory). The area and latency estimates for hardware and software

3

mappings of all nodes, as well as the communication and interfaces, must be known for an

effective partition.

Solving this partitioning problem is computationally intensive. Integer Linear Programming

could be used to solve constrained optimization problems such as the binary partitioning problem

but exact solutions are combinatorial in the order of O(2N) where N is the number of nodes [6]. A

heuristic known as the Global Criticality/Local Phase (GCLP) algorithm—with a worst case

computational complexity of O(N*A) for N nodes and A arcs—has been proposed to solve these

problems [8].

GCLP Algorithm

There are two possible objective functions to be considered while solving the mapping

problem: minimize the finish time or minimize the resource consumed by the node. These are

contradictory goals. To accommodate both goals, the GCLP algorithm adaptively selects the

objective function to be minimized at each step in the form of global criticality and local phase

measures. Figure 1 shows a flow chart for the iterative GCLP algorithm.

Tremaining = latency bound
Selected nodes = 0
Unselected nodes = all nodes in the graph

Find local phase and compute phase delta

Compute Global Criticality

Select mapping and compute start time

Select nodes among ready nodes
Select objective

Update number of unselected and selected nodes.
 Update remaining time

Have all
the nodes

been
selected

Yes

No

Figure 1: GCLP flow chart [8]

4

Initially all nodes are assumed to be mapped to software. Since GCLP has not performed the

mappings yet, it assumes the nodes to be unmapped. At each time step, the schedule for all the

mapped nodes is known. If it is not possible to map all the unmapped nodes into software and

complete execution by the latency bound, some of the unmapped nodes are moved to hardware.

The fraction of unmapped nodes moved from software to hardware at a given step gives the

Global Criticality (GC) at that step. A high GC implies that time is critical and hence the

algorithm minimizes the finish time of the nodes.

Local properties of the nodes are taken into consideration by classifying nodes into three

types: extremity, repeller and normal. An extremity node is one that would use a large amount of

resource—area or time—in a given hardware or software implementation and thus should be

mapped to the other implementation. The local preference of such nodes, referred to as the local

phase delta, forces the algorithm to choose minimum area as the objective function instead of

finish time.

To further swap nodes between hardware and software, the concept of a repeller is

introduced. A node is classified as a repeller based on its structure: bit manipulations are better

suited for hardware and hence a node performing many bit manipulations would be a software

repeller. A node that falls into neither of these groups is a normal node [6]. The algorithm repeats

this adaptive selection of objective functions until all nodes are mapped.

Design Objective

Our contribution to hardware/software co-design research is creating a tool to assist designers

partition a design into hardware and software modules using the GCLP algorithm. A design

assistant using the GCLP algorithm was previously prototyped within the Ptolemy software

environment in a specialized co-design domain, [7] but was not released. Our mapping tool is

5

available for use with Ptolemy’s CGC and VHDL domains. The tool guides users through the

partitioning process, helping them transform a Ptolemy universe into a C program and VHDL

description.

Formal Modeling

The final product of a partitioned design will be a software program and a set of hardware

specifications, customized for the application. In order to generate files for software and

hardware components, we mixed the CGC domain and the VHDL domain. Both these domains

adopt Synchronous Dataflow (SDF) semantics. SDF designs are statically scheduled, meaning

that the order of execution for each block is determined at compile time rather than at execution

time. Thus, the C code is statically schedulable and data memory is statically allocated. Because

the VHDL domain also uses SDF semantics, a galaxy defined in the CGC domain may be used

in the VHDL domain—and vice versa—by simply changing the domain parameter in Ptolemy’s

graphical interface [3]. These properties are beneficial for hardware/software partitioning.

Implementation

The GCLP mapping algorithm has been written as a standalone C program. To integrate

partitioning information into Ptolemy, we split the process into two phases:

• providing information from Ptolemy to the GCLP code, and

• bringing the mapping results back into Ptolemy.

Preparing GCLP Input

The user begins the design process with a software-only design in the CGC domain. The first

phase consists of invoking two design methodology management (DMM) universes. These are

called DMMs because they manage files involved in partitioning. The first universe accepts a

6

design in the CGC domain as an input and generates a Ptolemy script file in ptcl (Ptolemy tool

command language) format which describes the CGC universe in textual format.

The results of the partitioning process depend heavily on the estimates of software and

hardware execution times and available resources for each block of the system to be partitioned.

Presently, we assume that the user would be able to provide the necessary inputs for resource

estimates. The first DMM universe invokes an interactive tcl (tool command language) window

to accept the hardware/software resource requirement estimates and the area and timing

constraints. The user’s input and the graph obtained by parsing the ptcl file are stored in a file

which is then processed by the GCLP algorithm. The second DMM universe accepts arguments

required for executing the GCLP algorithm and calls the GCLP program. Upon execution, the

algorithm produces a file with mapping recommendations.

Partitioning and Co-simulating

In the second phase of implementation, the designer uses the GCLP mapping information to

partition the design. The designer modifies the original block diagram by switching

recommended blocks from software (in CGC) to equivalent hardware blocks (in VHDL), either

by changing galaxies’ domains or by replacing blocks. During this step, the user should ensure

that design elements in CGC and VHDL correspond exactly. Then, the user selects a hierarchical

target—a schedule manager that will schedule the software and hardware components separately

and coordinate communication between the two types of resources [9]. Finally, the designer

executes the design in Ptolemy, which generates code in C and VHDL, compiles the code, and

simulates the design. The C program contains a system call that invokes the VHDL simulator,

allowing for co-simulation of the hardware and software components.

7

Test Application and Results

We modified an existing CGC signal processing demonstration—a two-channel filter bank—

to test our partitioning tool. The design consists of signal generators, two sets of filters, and a

block that displays the output. Table 1 shows the hardware area, program memory, and execution

time (rough estimates only) required for three versions of the filterbank.

Table 1: Comparison of Area, Memory, and Execution Time for Two-Channel Filterbank

hardware area memory execution time

Software-only - 791 616

User-determined partition 28 503 381

GCLP-recommended partition 44 47 201

In this test, partitioning the design according to GCLP’s suggestions produced a design with

shorter execution time, less program memory required, and more hardware area required (though

still within the area constraint) than the user-determined partition.

Conclusion

Integrating the GCLP algorithm as a partitioning tool in Ptolemy helps designers partition

designs into hardware and software within the Ptolemy design framework. The first phase of the

partitioning is implemented as a series of menus in Ptolemy’s graphical interface. In the second

phase, the designer uses mapping information to partition a design into hardware and software

components, generate and compile code, and simulate the design. By adding this tool to Ptolemy,

we have made the co-design process more accessible. The GCLP algorithm can provide a near-

optimal partition that can be further refined by the user.

Future Work

The following points could be considered for future work to automate the partitioning tool:

8

• The hierarchical scheduler could be modified to consider the GCLP-generated schedule.

• The ptcl description of designs could be expanded to descend into wormholes, so that VHDL

sub-blocks could be specified in ptcl’s text format. This step would be necessary to ensure

compatibility for CGC and VHDL blocks that use customized parameters or that do not have

identical functions, such as FIR stars.

• The first phase of the implementation—the DMM universes—could be ported to the ACS

domain, and the second phase—partitioning, scheduling, and generating code—could be

written into a multiple-implementation ACS target.

References

1. D. W. Franke, M. K. Purvis, “Hardware/Software Co-design: A Perspective,” Proc. ACM Int. Conference on
Software Engineering, pp. 334 –352, Austin, Texas, USA, May 1991.

2. J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems," Int. J. Computer Simulation, vol. 4, pp. 155-182, April 1994.

3. E. A. Lee, et al., University of California at Berkeley, The Almagest, Volumes 1-3, Regents of the University of
California, 1995.

4. J. Villasenor and W. H. Mangione-Smith, “Configurable Computing,” Scientific American, vol. 276, no. 6, pp.
54-9, June 1997.

5. A. Kalavade and E. A. Lee, "A Hardware/Software Co-design Methodology for DSP Applications,” IEEE
Design and Test of Computers, vol. 10, no.3, pp. 16-28, Sept. 1993.

6. A. Kalavade and E. A. Lee, "The Extended Partitioning Problem: Hardware/Software Mapping, Scheduling,
and Implementation-bin Selection," Journal of Design Automation for Embedded Systems, vol. 2, no. 2, pp.
126-163, March 1997.

7. A. Kalavade, “System Level Co-design of Mixed Hardware-Software Systems,” Technical Report UCB/ERL
95/88, Ph.D. Dissertation, Dept. of EECS, University of California, Berkeley, Sept. 1995.

8. A. Kalavade and E. A. Lee, "A Global Criticality/Local Phase driven Algorithm for the Constrained
Hardware/Software Partitioning Problem,” Proc. IEEE Int. Workshop on Hardware/Software Co-design, pp.
42-48, Sept. 22-24, 1994.

9. J. L. Pino, S. S. Bhattacharyya and E. A. Lee, “A Hierarchical Multiprocessor Scheduling System for DSP
Applications,'' Proc. IEEE Asilomar Conference on Signals, Systems, and Computers, vol. 1, pp. 122-6, Oct.30
– Nov.2 1995.

