HDSL2 Modern Modeling and Simulation

Patrick Jackson

Reza Koohrangpour

5/6/99

HDSL2 Modem Modeling and Simulation

HDSL2 Overview

High-bit-rate Digital Subscriber Line - 2nd Generation

- Symmetric 1.544 Mbps
- Applications
 - T1 replacement
 - Telecommuting
 - Internet access
- Advantages Over T1
 - Much easier to deploy
 - Bridge taps OK
 - 12,000 feet range
 - Spectral compatibility
 - Single twisted pair

HDSL2 Modem Mod	leling and Simulation
-----------------	-----------------------

Project Overview

Ptolemy Simulation

- Trade-off analysis
 - Highly configurable
 - Extensible
- SDF domain
- Reference Design
 - HDSL2
 - Other modems
- Ptolemy Contributions

Startup Mode

Equalize channel

- Reverse distortions
- Adaptive filters in receiver
- Training sequence
- Communicate parameters back to transmitter
 - Equalizer coefficients
 - Convolutional encoder polynomial

- Configurable
 - Channel model
 - Adaptive equalizer
- Passes parameters to data mode through files

Programmable Encoder

Convolutional Encoder

- $-T_s = delay of one symbol time$
- $\oplus = binary exclusive-OR$
- $\otimes =$ binary AND

8

Trellis Decoder

Viterbi Algorithm

Maximum likelihood sequence detection

- Calculate difference between received codes and codes leading to next possible states
- Choose minimal difference sequence
- Window length
 - Sequence depth before decision
 - Trade-off: complexity,latency/gain

Simulation Parameters

ScramblerPolynomial:	01010000001					
EncoderNumerator:	0556 # Convolutional encoder polynomial numerator					
EncoderDenominator:	01461	61 # Convolutional encoder polynomial denominator				
DecoderWindow:	9 # Prune depth of decoder					
ChannelDelay:	9	a # Group delay of channel model filters				
ChannelNoisePower:	0.4	0.4 # Variance of noise added by channel model; mean=0				
HardDecoding:	YES # YES=hard, NO=soft					
ок	ī	Apply	Close	Cancel		
Add parameter		Remove parameter				
5/6/99 HDSL2 Modern Modeling and Simulation					11	

Conclusion

Contributions

- Configurable/extensible simulation
- Reference design
- Ptolemy
 - Programmable Viterbi decoder
 - Tomlinson Precoder

Limitations and Future Work

- Startup-to-data mode sequence
 - Mixed FSM, BDF, and SDF
- Timing recovery
 - Mixed BDF and SDF