
Final Project Report

on

HDSL2 Modem Modeling and Simulation

Patrick Jackson

Reza Koohrangpour

May 12, 1999

EE 382C: Embedded Software Systems

Spring 1999

Abstract
HDSL was developed as a low cost alternative to T1. The key value

of HDSL is its ease of installation. Like T1, it operates over two twisted
pair. The second generation, HDSL2, is currently being developed as a
single-pair HDSL solution. This is a technically challenging endeavor,
requiring advanced coding and signal processing techniques. The HDSL2
draft standard gives a significant degree of designer flexibility by
including programmable components and specifying implementation
details only when necessary. We have implemented a highly configurable
and extensible HDSL2 simulation in the Ptolemy environment for the
purpose of tradeoff analysis and as a reference design. This paper
describes the capabilities and limitations of our simulation.

1 Introduction

High-bit-rate Digital Subscriber Line (HDSL) was developed in the early 1990s as a

low cost alternative to T1. T1 provides a symmetric throughput of 1.544 Mbps over two

twisted pairs. Phone companies use T1 in point-to-point links, particularly between

central offices, between central offices and cellular base stations, and between end-users.

T1 is an old technology that is expensive and difficult to install, requiring repeaters and

stringent line qualification. HDSL also operates on two twisted pairs at a T1 payload rate

but was designed to make installation much easier. HDSL tolerates most loop

impairments and obviates the need for repeaters on standard lines. Another important

factor that makes HDSL easier to deploy is its spectral compatibility with pre-existing

services. These properties make it possible for T1 services to be provisioned with HDSL

on a large percentage of existing twisted pair loops with no line conditioning and without

segregating services. Standards groups are currently working on the HDSL2 (HDSL 2nd

generation) specification to provide a single-pair HDSL solution. Evolving HDSL to a

single-pair implementation has proven to be very challenging, requiring advanced coding

and signal processing techniques [1].

The HDSL2 standard is currently in the draft stage. The draft standard [2] gives a

significant degree of designer flexibility by including programmable components and

specifying implementation details only when necessary. Because the new standard allows

for such flexibility we have implemented a highly configurable and extensible HDSL2

simulation. The primary contribution of the simulation is to enable tradeoff analysis. The

most computationally intensive components of HDSL2 are programmable. Our

simulation provides a platform to easily vary these component parameters and observe

the resource requirements and performance consequences associated with such changes.

A secondary contribution is to supply a reference design of the system. Because the draft

standard specifies only details that are crucial to conformance, an example

implementation of the key components is useful to developers.

The purpose of this paper is to describe our simulation, identifying both its

capabilities and limitations. First, we summarize the operation of the HDSL2 modem,

emphasizing the configurable components. We then describe our simulation by stating

which parts we have implemented and how they can be configured. Finally, we conclude

by discussing the limitations of our simulation and enhancements that could be done to

the project.

2 Modem Operation

2.1 Startup Mode

As the draft standard describes, the modem operates in two modes, startup mode

and data mode. While in startup mode, the transmitter sends a predefined sequence of

data to allow the adaptive equalizer in the receiver to train on the channel. Fig. 1 is a

diagram of the components that comprise a startup mode session [3]. We begin with a

description of the transmitter, followed by the receiver.

ScramblerData
In

Bit-to-Level
Mapper

Spectral
Shaper

DescramblerData
Out

Level-to-Bit
Mapper

Decision
Feedback
Equalizer

Receiver
Front End

Linear
Equalizer

Echo
Canceller Hybrid

Fig. 1 Startup Mode of an HDSL2 Modem

The first component to process the training sequence is the scrambler. The

scrambler attempts to randomize the data to be sent. The bit-to-level mapper converts the

bit sequence to the appropriate output level. During startup mode, a simple two-level

pulse amplitude modulation (PAM) scheme is used. The shaper performs the filtering on

the symbol sequence needed to produce a continuous-time signal for transmission over

the channel [4].

Impedance mismatches between the hybrid and the twisted pair cause a portion of

the transmitted signal to be reflected back to the receiver. The echo canceller is an

adaptive transversal filter that learns the response of the hybrid and generates a replica of

the reflected signal to be subtracted from the received waveform. The receiver front end

performs timing recovery and sampling [5].

The linear equalizer and the decision feedback equalizer (DFE) process the

incoming signal to reverse the linear amplitude and phase distortion caused by the

channel. This distortion, known as inter-symbol interference, causes adjacent symbols to

overlap and interfere with one another. The linear equalizer is a feedforward filter and the

DFE is a feedback filter. The filters are jointly adapted during startup mode while the

training sequence is being processed [6][7].

The equalized pulse samples are fed to the level-to-bit mapper. This component

reconstructs the bit stream by quantizing the samples from the PAM levels received.

Finally, the desrambler simply returns the bit stream to its prescrambled form, producing

the output.

After training, the receiver sends configuration data back to the transmitter. This

configuration data consists of precoder coefficients found by the decision feedback

equalizer and the convolutional encoder parameters that the receiver expects the

transmitter to use. We give a description of these components in the following section.

The modem then switches to data mode.

2.2 Data Mode

Fig. 2 shows the components that make up the data mode session.

ScramblerData
In

Bit-to-Level
Mapper

Spectral
Shaper

DescramblerData
Out

Level-to-Bit
Mapper

Trellis
Decoder

Receiver
Front End

Linear
Equalizer

Echo
Canceller Hybrid

Tomlinson
Precoder

Trellis
Encoder

Tomlinson
Modulo

Transmit
Framer

Receive
Framer

Fig. 2 Data Mode of an HDSL2 Modem

The transmit framer encapsulates the input data to send as HDSL2 frames [2]. The

scrambler makes the data look more random, as in startup mode. In the trellis encoder,

the bit stream is first converted to a sequence of 3-bit parallel words. The least significant

bit (earliest in time) of each word is encoded with a programmable convolutional

encoder [2], while the remaining two bits are passed through unaltered. The encoder adds

redundancy to the data so that errors can be detected and corrected. The convolutional

encoder produces two bits for every one it is given, resulting in a 4-bit word. The 4-bit

encoded symbols are sent to the mapper to be converted to one of 16 PAM levels.

The Tomlinson precoder performs the feedback equalization done by the DFE in

the startup mode receiver. Performing this function in the transmitter prohibits decision

errors caused by the channel from being propagated through the feedback filter. Another

reason this needs to be done in the transmitter is because the feedback loop requires a

zero-delay decision. The Viterbi decoding algorithm, discussed later, introduces decision

delay and so can not be implemented within the DFE. Placing this decision after

equalization allows us to use both encoding and feedback equalization and realize the

combined gains they provide. A modulo operation is performed in the precoder feedback

loop to ensure that the transmitted signal stays within an acceptable range. This will

result in an expanded symbol set at the receiver [6][7].

The spectral shaper, receiver front end, echo canceller, and linear equalizer all

provide functionality equivalent to startup mode. The equalized symbols are passed to the

trellis decoder. The decoder uses the Viterbi algorithm to search for the data sequence

generated by the encoder that is closest to the received sequence. There are two methods

used to calculate the difference between the received and expected sequence- hard and

soft decoding. Briefly, hard decoding first quantizes each received symbol before

calculating the difference from the expected symbol, while the soft method excludes the

quantization step to improve precision. Another important factor is the length of the

sequence used for comparison, the window length. A full discussion of the Viterbi

decoding algorithm is given in [8]. The Tomlinson modulo operator recovers the original

symbols from the expanded symbol set produced by the precoder [6][7]. The symbols are

then converted back to a bit stream by the level-to-bit mapper. The receive framer

processes the resultant bit stream, extracting the received data.

3 Modeling and Simulation

To limit the scope of our simulation, we included only the portions of the modem

that are needed to perform trade-off analysis of the programmable components. The

necessary parts are: scrambler, descramber, mappers, linear equalizer, DFE, Tomlinson

precoder, trellis encoder, and trellis decoder.

We chose Ptolemy [9] as the platform to develop our simulation. Ptolemy is a

flexible and extensible graphical development environment that is freely distributed by

the University of California at Berkeley. Ptolemy supports dataflow programming, which

is a natural representation for signal processing algorithms. In short, dataflow

applications are specified with graphs in which the nodes represent computations and the

directed arcs between the nodes carry data. A special case of dataflow supported by

Ptolemy called synchronous dataflow (SDF) requires each node to produce and consume

a constant amount of data with each execution [11]. This makes a compile time

determination of execution order and memory requirements possible. These properties

give SDF systems very predictable run-time behavior.

We implemented our entire simulation with SDF blocks. However, the parameter

exchange during the transition from startup to data mode can not easily be modeled with

SDF. As a result, we implemented the modem as two separate parts- a startup mode

simulation and a data mode simulation. The startup simulation transmits the training

sequence allowing the adaptive equalizer to converge on the channel. On termination, the

equalizer coefficients are saved to a file. Fig. 3 shows the startup mode simulation.

Fig. 3 Startup Mode Simulation

The data mode simulation uses the equalizer coefficients stored by the startup

execution to program the Tomlinson precoder. This simulates the transmission of these

parameters before the switch to data mode. Fig. 4 shows the data mode simulation

provisioned to count the number of bit errors encountered with a random binary input

stream over a channel with linear distortion and additive Guassian white noise.

Fig. 4 Data Mode Simulation

Fig. 5 shows the data mode configuration window. The window allows the user to

set, at run time, all the parameters necessary to perform trade-off analysis of the

programmable components. This is a particularly useful feature when developing the

Viterbi decoder because we expect it to represent approximately 85-90% of the

computational resources of the system.

Fig. 5 Data Mode Simulation Configuration Window

4 Limitations and Future Work

Several enhancements could be made to the simulation. An obvious improvement is

the combine the startup and data mode into a single simulation. Ptolemy supports the

mixing of SDF with a finite state machine (FSM) model of computation. With this

combination the startup to data mode transition logic could be added on top of the current

SDF blocks as an FSM process. Another consideration is the channel model. The model

used is a very simplified, stationary system. A time-varying model that simulates

crosstalk interference from other services as described in [2] would be more realistic. Our

simulation also assumes a synchronized transmitter and receiver so that both the spectral

shaper and the receiver front end can be left out. These would be useful additions.

Finally, the Tomlinson modulo operation is done before the trellis decoder in our receiver

simulation. For optimal performance, the modulo needs to be done in the decoder.

5 References

[1] J.W. Lechleider, “High Bit Rate Digital Subscriber Lines: A Review of HDSL Progress,” IEEE
Journal on Selected Areas in Communications, vol. 9, no. 6, pp. 769-784, Aug. 1991.

[2] M. Rude, "Draft for HDSL2 Standard," ADC Telecommunications contribution, T1E1.4/99-006, Jan.
1999.

[3] R. Goodson, K. Schneider, and J. Moore, “Proposal for Single-Loop HDSL Using Simple Coded
PAM,” ADTRAN contribution, T1E1.4/96-037, Apr. 1996.

[4] R. Gaikwad and R. Baraniuk, “Optimal Transmit Spectra for HDSL2,” Rice University contribution,
T1E1.4/98-162R1, Jun. 1998.

[5] E.A. Lee and D.G. Messerschimitt, Digital Communication, 2nd Edition, Kluwer Academic Publishers,
ISBN 0-7923-9391-0, 1994.

[6] G.J. Pottie and M.V. Eyuboglu, “Combined Coding and Precoding for PAM and QAM HDSL
Systems,” IEEE Journal on Selected Areas in Communications, vol. 9, no. 6, pp. 861-870, Aug. 1991.

[7] A.K. Aman, R.L. Cupo, and N.A. Zervos, “Combined Trellis Coding and DFE through Tomlinson
Precoding,” IEEE Journal on Selected Areas in Communications, vol. 9, no. 6, pp. 876-883, Aug.
1991.

[8] A.J. Viterbi, "Convolutional Codes and Their Performance in Communications Systems," IEEE
Transactions on Communications, COM-19, pp. 750-772, Oct. 1971.

[9] J. Buck, S. Ha, E.A. Lee, and D.G. Messerschimitt, “Ptolemy: A Framework for Simulating and
Prototyping Heterogeneous Systems,” International Journal of Computer Simulation, special issue on
Simulation Software Development, vol. 4, 1994.

[10] E.A. Lee and D.G. Messerschmitt, “Synchronous Dataflow,” Proceedings of the IEEE, vol. 75, no. 9,
1987.

