
An Extension to the Foundation Fieldbus
Model for Specifying Process Control Strategies

EE382C: Embedded Software Systems, Spring 1999

Prof. Brian L. Evans
Department of Electrical and Computer Engineering

The University of Texas at Austin

Michael Schaeffer
May 8, 1999

Abstract: As the process control community moves towards open
standards, efforts like the Fieldbus Foundation’s Foundation Fieldbus will
play an increasingly prominent role. This paper discusses an effort to
integrate an imperative programming language into the dataflow
programming model specified by Fieldbus.

Copyright 1999 by Michael Schaeffer page 1 of 10

Introduction

As society enters the 21st century, one of the more profound differences between

now and the previous century is the important role of large scale chemical production

facilities. These facilities are instrumental in making the refined chemicals needed for

the production and usage of manufactured goods. Everything from aspirin to motor oil

are made in immense quantities by automated production lines, and as our society has

grown, so too have our demands on these production facilities. To meet this demand, a

process control industry has emerged to help automate and control the processes of

chemical refining and production.
A typical process control application is controlling the level of fluid in a reactor

vessel. The process control system is composed of some form of programmable logic

controller (PLC) and a collection of I/O sensors that interface it to the outside world.

For controlling the level of fluid in a tank, there will be a pressure sensor to measure the

fluid level and a valve to control the rate at which fluid flows into the tank. The

industrial computer will sample the level sensor periodically, compare the actual value

against the desired value, and calculate a new position for the valve, typically using the

PID control algorithm. Currently, the control algorithm is usually implemented in one

of the five IEC1131 languages, sometimes BASIC, and resides entirely on the PLC. The

PLC monitors the level sensor and controls the valve using a pair of wires for each

device and monitoring or controlling the current in the wiring loop between the device

and the PLC. Two of the main disadvantages to this approach are a high cost to the

wiring between the PLC and the devices, and a closed product architecture. Typically,

vendors develop a product architecture that strongly favors staying within a given

product lineup; this can lead to increased engineering costs for control solutions.

Copyright 1999 by Michael Schaeffer page 2 of 10

In an effort to solve some of the issues of process control, one of the more recent

developments in the process control field is Foundation Fieldbus. Foundation Fieldbus

is a specification that combines a networking protocol and an application model. The

networking protocol defines a standard that allows intelligent devices to co-exist on one

network. By defining a class of periodically scheduled traffic, the Fieldbus networking

standard allows devices to communicate with each other in a predictable fashion in

which a basic level of functionality is guaranteed. In addition to the network standard

defined by Fieldbus, the Fieldbus specification defines an object oriented application

model and a set of objects built using that model in which to build interoperable control

systems. To provide a guarantee of interoperability, Fieldbus devices are formally

tested against these specifications before they can be certified as an interoperable

device.

This paper will introduce the application model of Foundation Fieldbus and

discuss the development of an extension to that model. The design choices involved in

making the extension will be discussed, along with the effects of the extension on the

computational capabilities of Fieldbus. Finally, a few alternatives for future

advancement of control system specification in Fieldbus will be discussed.

A Variant of Synchronous Dataflow

The fundamental object in a Fieldbus control application is the function block.

Analogous to stars in the Ptolemy dataflow toolset [2], a function block is an actor in a

dataflow network. Function blocks can contain input parameters that subscribe to

information published by output parameters on other function blocks. The connections

between input and output parameters are defined by another Fieldbus object– the

linkage object. [3] The linkage object contains the information used to bind two

Copyright 1999 by Michael Schaeffer page 3 of 10

parameters together, including an optional network connection that can be used if the

function blocks being linked exist on different devices.

Once this dataflow graph has been created, the devices containing the objects it is

composed of must be configured to run the graph. Like the Synchronous dataflow

model (SDF) the dataflow graph can be synchronized statically. [12] However, in stark

contrast to the SDF model, for each execution, Fieldbus function blocks are constrained

to produce or consume one data value per I/O parameter. This trivializes the

computation of the repetitions vector (each node runs once) and thus trivializes

computing a schedule to computing a topological sort of the dataflow graph.

The other significant departures from the SDF model are the notions of execution

time and concurrency. One of the central tenets of deterministic control in Fieldbus is

that the control application should run with predictable and consistent time behavior.

To achieve this, the Fieldbus model requires each function block to have a declared

maximum run-time. When scheduling the function blocks, they are scheduled relative

to a time offset, rather than to an ordering. As an illustration, where an SDF schedule

would read “fire block A and then fire block B”, a Fieldbus schedule would read “fire

block A at offset 0ms, fire block B at an offset of 10ms and repeat this cycle every 25ms.”

As with block execution, communications on the Fieldbus also have a ‘declared’

upper bound on the time in which they will take. Because of the predictable nature of

scheduled traffic on the Fieldbus, examining the communications parameters of the bus

allows the calculation of an upper bound on the length of time it takes to transmit a

parameter from one device to another. As a result of this, it becomes possible to take

into effect communications between multiple devices as the schedule is calculated. A

function block graph can then be scheduled on multiple devices, and the concurrency

allowed by multiple processor elements can be used to decrease the overall execution

Copyright 1999 by Michael Schaeffer page 4 of 10

time of the graph. An important difference between the SDF model and the Fieldbus

model is that processors are not heterogeneous in the Fieldbus model. Since a block

might be performing physical I/O, that block must run on the device containing the

I/O transducer.

Along with defining a framework in which function blocks may be defined, the

Fieldbus specification defines a set of ten standard function blocks. These function

blocks encompass basic I/O operations like reading an analog I/O channel as well as

control functions, like the PID algorithm typically used in applications like tank level

control or temperature control. For a device to be registered with the Foundation, every

block based on one of the ten standard blocks must pass a rigorous test regimen. This

allows the Foundation to say with confidence that the device will behave predictably

when networked with other registered devices. To facilitate adding value to the

standard Fieldbus function blocks, the Foundation allows blocks with extended sets of

I/O parameters to be defined, as long as the default values for the device-specific

parameters results in a block that will pass the test suite. The Foundation also allows for

the presence of untested blocks. Custom blocks, like the block described in this paper,

fall into this category.

The Expression Block

The ideal Fieldbus device would support all ten standard blocks with a large

amount of manufacturer-specific functionality. This would enable customers of the

device to utilize the full range of control defined in the specification. This model has

two significant flaws: a relatively low return on the investment of developing all ten

blocks, and the possibility that the set of ten standard blocks are insufficient to

implement a given control strategy. To solve this, a manufacturer specific block with the

Copyright 1999 by Michael Schaeffer page 5 of 10

capability of calculating arbitrary expressions is a natural fit for the job. In addition to

being lower cost to develop than a standard function block, the expression block

encompasses a much wider variety of control than a standard fixed function block. I

developed the expression block described in this paper for the National Instruments FP-

3000, a Fieldbus compliant process controller. In addition to the expression block, the

FP-3000 supports a set of Fieldbus standard function blocks for I/O as well as process

control.

To implement an expression block, there are a number of engineering decisions

that need to be made. The choice of expression language is one such decision. To

minimize the effort involved in writing a language parser, as well as to use a well-

established syntax, I chose an extreme subset of C. Unlike the full language, the

language supported by the expression block only supports C expressions,

“if...then...else” statements, and a collection of state variables that persist from one block

execution to the next.

The second major engineering issue was the implementation of the expression

engine. To guarantee that each pathway through the expression is valid, it was essential

that the entire input expression be checked for syntax and other similar errors. This and

the anticipation of future efforts to calculate a bound on the run-time of the expression

resulted in the selection of a implementation of the expression language that uses a

compiler and a byte-code interpreter. Each time the expression is changed, it is

compiled into an intermediate bytecode for a stack-based machine. For each function

block execution, the bytecode interpreter is invoked in the bytecode produced by the

compiler. In this manner, the expression can be checked for validity as soon as it is

downloaded and decomposed into a format that has a low execution overhead. In

addition, the bytecode produced by the compiler offers an easy way to estimate an

Copyright 1999 by Michael Schaeffer page 6 of 10

upper bound on the execution time of the block. By assigning each bytecode its own

execution time and summing up all of the individual bytecode execution times, an

upper bound may be calculated. To compute more accurate bounds, the results of the

Cinderella project could be applied to the calculation. [8]

The last design issue I discuss, and perhaps the most significant issue from the

end-user’s point of view is the handling of Fieldbus value/status pairings. When a data

value is published from one function block to another, it carries with it a status, a

description of the quality of the value being published. One use of this is to report a

sensor failure. If a device detects a failure in the physical device hardware, it can report

that fact to the function blocks that implement the control algorithm. The control

algorithm can then initiate a fail-safe behavior to preserve the integrity of the process

and prevent capital damage. In addition to carrying information about the quality of the

data, the status also carries information describing the ‘limiting’ of the value. If an

input sensor is at the upper or lower bound of its scale, the function block can report the

value as high or low limited respectively. In the case of output devices, such as valves,

the valve can report being fully open or closed to its controlling function block. This

enables the controlling algorithm to behave predictably as the system approaches the

limits of its behavior.

Unlike the standard function blocks, the expression block has no pre-defined

status behavior. That is, the Fieldbus specification does not define a general means for

deciding how a status is to progress through a series of calculations. As a result, I

decided to adopt a simple set of rules and allow the user to override those rules with a

set of functions intrinsic to the expression language. In the case of binary operators, the

output of the operator carries the lowest status of the two input parameters. In a case

where a ‘good’ value and a ‘bad’ value are added, the sum has a status of ‘bad’. If both

Copyright 1999 by Michael Schaeffer page 7 of 10

summands are ‘good’, the sum is also ‘good’. In the case of the limit bits, I have

defined, and documented, a set of rules, I believe to be sensible. In the case of addition,

if the two summands are limited in the same direction, the sum is also limited in the

same direction. If the summands are limited in different directions, the sum is not

limited at all.

The rules described above are intended to allow end users to use the expression

block in simple applications without concern for the status logic of Fieldbus. In the case

where a linearization stage is needed between an input parameter and a control block, it

is safe to assume that the quality of the linearized output is the same as the quality of

the output from the input sensor. In this case simple status propagation is all that is

needed. In the case where multiple input sensors are combined into one value, it is also

safe to assume that the quality of the output is only as good as the worst quality input

value. In cases where these assumptions are not true, or the user is sophisticated

enough to control the status logic manually, the expression block provides a set of

standard functions for controlling the status.

Futures

Like many other customer-driven ventures, the future of the work described in

this paper is at the mercy of the people that have an interest in subsidizing development

by buying the product. As a result, it is hard to accurately predict the direction in which

the work will progress. Having said that, I believe that in the short run, ideas presented

in this paper should be extended to be more standards oriented, allow more

expressiveness, and aim for a high level of usability. In the long run, I believe that this

work should be significantly extended into a general-purpose system for programming

control strategies.

Copyright 1999 by Michael Schaeffer page 8 of 10

Taken to the limit, the idea of an expression block leads naturally to an

architecture in which entire function blocks can be developed in an external

environment and downloaded at run time to the Fieldbus device. Development of

suitable tools would enable such a function block to be specified in a graphical

programming environment and programmed using a standard, IEC1131, language. This

would enable developers with existing PLC programming experience to migrate their

skillset and existing code to the environment of function blocks on intelligent devices.

Accomplishments and Conclusion

This work has many logical precedents. Ranging from integration of languages

like Matlab into Ptolemy [1], to a similar expression language embedded into National

Instruments’ LabView dataflow model [9], the concept of embedding a language into a

dataflow graph is not new. The fundamental accomplishment of the work described in

this paper is the potential extension of a product into a new set of problem domains.

The FP-3000 as it initially shipped was suitable for use only as a PID loop controller, the

most basic class of control device. With the introduction of this limited form of

programmability, the FP-3000 has been endowed with the capability to implement

arbitrary control logic. Thus, within the performance constraints of the product, it

should be more able to compete, featurewise, against existing PLCs. The second

accomplishment of the work described in this paper is the creation of an example,

suitable for end-users, of heterogeneity in the SDF model of computation. The act of

embedding an imperative language with simple control flow into a dataflow graph, and

the ability to maintain state across executions is tantamount to embedding a finite state

machine into that same dataflow graph.

Copyright 1999 by Michael Schaeffer page 9 of 10

References

1. B. L. Evans. “Matlab and the Ptolemy/Matlab Interface”, DSP Design Group
Meeting, University of California at Berkeley, Berkeley, CA.

2. E. A. Lee. “Overview of the Ptolemy Project”, ERL Technical Report UCB/ERL No.
M98/71, University of California, Berkeley, CA 94720, November 23, 1998.

3. Fieldbus Foundation, Foundation Specification: Function Block Application Process: Part
1, version 1.3, Fieldbus Foundation, Austin, Texas, 1998.

4. Fieldbus Foundation, Foundation Specification: Function Block Application Process: Part
2, version 1.3, Fieldbus Foundation, Austin, Texas, 1998.

5. Fieldbus Foundation, Foundation Specification: Function Block Application Process: Part
5, preliminary, Fieldbus Foundation, Austin, Texas, 1999.

6. K. Nielsen and W. Schmidt. “Performance of a Hardware-Assisted Real-Time
Garbage Collector,” Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, 1994, San Jose, CA.

7. K. Nielsen. “Issues in the Design and Implementation of Real Time Java,” Java
Developers Journal, http://www.sys-con.com/java/iss1/real.htm

8. M. Jacome. “H/S Codesign: Performance Analysis of Software”
http://www.ece.utexas.edu/~bevans/courses/ee382c/lectures/20_hwsw/cinderel
la.pdf

9. National Instruments, LabView User Manual” National Instruments, Austin, Texas,
1998.

10. R. Atherton. Moving Java To The Factory , IEEE Spectrum, December 1998, vol 25,
no 12

11. R. Valdes. “Little Languages, Big Questions”, Dr. Dobbs Journal. September 1991

12. S. S. Battacharyya, P. K. Murthy, and E. A. Lee, “Software Synthysis from Dataflow
Graphs”, Kluwer Academic Publishers, Norwell, Mass, 1996.

13. Sun Microsystems Inc. The Java Language Environment: A White Paper. 1995 Sun
Microsystems Inc.: Mountain View, CA.

