
Literature Survey:
Extending Real Time Dataflow with Arbitrary Logic

Michael Schaeffer
March 23, 1999

EE382C: Embedded Software Systems, Spring 1999

Prof. Brian L. Evans
Department of Electrical and Computer Engineering

The University of Texas at Austin

Abstract: As Foundation Fieldbus becomes more widely used for the development of
process control solutions, the limitations of having a standard, fixed vocabulary of function
blocks will become more obvious to control system engineers. To help mitigate this problem, I
intend to develop a way to safely specify arbitrary control logic within the dataflow based
framework of the Foundation Fieldbus Function Block Application.

Introduction

I intend to explore alternatives for

incorporating arbitrary logic, specified in an

imperative language, into an existing

dataflow development environment. This is

intended to help mitigate the problem that

arises when the vocabulary of blocks

supported by a given dataflow system is

insufficient to specify a desired behavior. As

dataflow systems are an established tool for

specifying and modeling systems, this

problem has been addressed by a number of

people and organizations, and many

examples of techniques that address this

problem are described in the literature.

The particular dataflow system I

intend to extend, the Foundation Fieldbus

function block model (FBAP), is unique in

that it is deterministic, runs on an embedded

platform, and is capable of being distributed

across multiple devices. A user of the

FBAP model specifies a dataflow graph

using a network configuration tool. She may

then assign blocks in the dataflow graph to

devices on her network of devices. The

configuration tool then schedules the

periodic execution of the device’s function

blocks as well as the network

communication that occurs between the

various function blocks. Because it is

precisely scheduled the network can

guarantee deterministic execution of the

dataflow graph.

Objectives

Because of the widespread

acceptance of dataflow as a modeling and

programming tool, many other people have

tried to solve similar problems in various

other dataflow systems. My primary intent

in my literature survey was to explore pre-

existing solutions for extending dataflow

tools that might be useful applied towards

extending the FBAP model. My secondary

intent was to explore alternatives for the

language in which the arbitrary logic was to

be specified.

Extending Dataflow

As shown extensively by the

Berkeley Ptolemy project, it is quite possible

to bridge the gap between dataflow and

other models of computation. Ptolemy, for

example, contains what is perhaps the

ultimate form of arbitrary block. In addition

to blocks that can invoke Matlab and

Mathematica expressions, Ptolemy has an

editor in which blocks might be specified in

a variant of C++. These definitions can be

compiled into a shared library and linked

into the environment seamlessly and at

runtime. In a workstation environment, with

relatively unlimited resources, this is a

powerful and effective way to allow the user

to incorporate arbitrary logic into a dataflow

graph. However, in the embedded

environment of Foundation Fieldbus

devices, lower-impact solutions must be

explored.

The Smar PLC’s Foundation
Fieldbus Interface

Smar, a Brazilian company

specializing in Foundation Fieldbus process

control solutions, has developed a scheme

by which arbitrary logic may be included in

a dataflow diagram. The Smar LC700

Programmable Logic Controller has the

ability to run both FBAP dataflow diagrams

as well as arbitrary programs written in

IEC1131 ladder logic, an industry standard

for programming process controllers. To

bridge between the two development

environments, Smar’s device has a proxy

block that allows FBAP dataflow

applications to read and write to a region of

memory shared with the IEC1131 logic

interpreter. The LC700 has two seperate

microprocessors, one is used to run IEC1131

code, and the other runs the FBAP dataflow

graph. This hardware architecture is

depicted below.

FBAP IEC1131 I/O ModulesSHRAM

The Architecture of Smar’s LC700

This implementation of

programmable function blocks does run in

an embedded device on a Foundation

Fieldbus network. It also preserves the

deterministic characteristics of the FBAP

dataflow graph and allows interoperability

with non-dataflow code written in an

industry standard programming language.

The difficulty with this implementation is

that it does not place any timing constraints

on the code implementing the arbitrary

logic. While the dataflow graph might be

executing once a second, there is no

guarantee that the logic behind the

programmable function block is running at

the same rate, if it is running at all. While

this design allows the developer to specify

arbitrary logic, it comes at the high price of

a lack of determinism of the custom logic;

the custom logic becomes a second class

citizen.

The second difficulty with this

architecture is that the logic behind the

custom function block must be specified in

terms of IEC1131. Where a FBAP dataflow

arc contains detailed information on the

quality of the data being transmitted,

IEC1131 does not have the concept of

quality information. This prevents fieldbus

quality information from being seamlessly

processed and effectively forces custom

logic in a control system to become an

opaque barrier for this quality information .

The LabView Formula Node
Probably the most well known

dataflow tool is National Instrument’s

LabView. LabView was initially developed

by National Instruments in 1986 to make it

easier for non-programmers to develop

software for a companion line of interface

hardware. To ease the transition for

engineers that might be accustomed to

wiring diagrams, LabView adopted a

dataflow model that allows VI’s, the

LabView name for a computation node, to

be wired together graphically. A LabView

program that calculates the distance between

two points is shown below.

Dataflow Expression in LabView

One of the difficulties that LabView

faces with the pure dataflow model is

readability. Simple numerical expressions,

like the formula shown above, become more

difficult to read and extend than the textual

equivalent. To help deal with this issue,

LabView incorporates a formula node that

allows numerical expressions to be entered

textually. With this formula node, the

distance calculation program shown above

can be expressed as shown in the following

picture. In this manner, LabView allows

arbitrary numerical expressions, in a textual

format, to be seemlessly incorporated into a

dataflow graph.

Imperative Expression in LabView

The NI Function Block Shell
To support the development of

blocks for Foundation Fieldbus devices.

National Instruments has developed a tool,

the Function Block shell, that provides an

easy environment for developing function

blocks. The function block shell allows C

code to register blocks in a common

database residing on the device. Once

registered in the database, the shell will

invoke callbacks to inform the user code of

processing that needs to be done. As the

block needs to be executed, the shell will

invoke a callback, cbExec, that should

contain the processing code for the block.

The shell will also provide callbacks to

inform the user level code of configuration

changes and requests from the configuration

utility to create and destroy instances of

blocks.

The function block shell does

effectively allow for custom blocks to be

defined. In fact, in National Instruments’

FP-3000 device, all of the blocks in the

device are defined by writing code to the

shell API. The difficulty with the shell is

that it requires that the code that defines

blocks be statically linked in the device’s

firmware. Since end users can not build the

firmware image for the device, this keeps

them from being able to define function

blocks using the shell.

Domain Specific Languages

The other aspect of my investigation

related to domain specific programming

languages. There are a number of clear

disadvantages to using a general purpose

language, like C or C++, to specify arbitrary

logic for a block in a dataflow diagram. To

address these issues, I investigated a variety

of ‘little languages’. A ‘little language’ is a

small, focused programming language, often

embedded in a larger software system to

solve a specific problem. One such example

is the formatting language used by the C

printf standard library function. It allows

concise specification of a very particular

type of problem.

In the case of adding arbitrary logic

to a Foundation Fieldbus function blocks,

the problem domain is the specifications of

expressions for numerical computation. This

is slightly complicated by the fact that the

standard Fieldbus data types for data flow

arcs contain a value and a status. The status

is a description of the quality of the data

being broadcast on the dataflow arc. It also

contains information pertaining to the reason

the quality is what it is as well as

information describing if the value is limited

or constant and unable to be changed. For an

arbitrary logic block to effectively

interoperate in a Fieldbus FBAP dataflow

graph, it must manipulate and propagate the

status information as it performs

calculations. Ideally, this would be as

transparent to the user as possible.

The second requirement is that the

user should be restricted from specifying

logic that is of unbounded execution time.

This is to be able to guarantee that a system

will always work in a predictable manner

and never cease to control the process due to

a logic error in the specified control

algorithm. A domain specific language

makes it possible to have very precise

control over what the user is allowed to do

and not do and can greatly ease this

problem.

While most existing examples of

domain specific languages are too domain

specific to directly apply to adding arbitrary

logic into FBAP dataflow graphs, there are a

number of general concepts that do directly

apply. One common implementation of

domain specific languages is that they

should be compiled into a bytecode. The

runtime engine becomes a simple bytecode

interpreter and is not responsible for syntax

checking and other forms of formal

verification. This not only allows the

specified logic to execute more quickly, but

it allows errors in the program to be detected

more quickly and reliably.

Conclusion and Goals

For the remainder of this project, I

intend to develop a expression compiler and

bytecode runtime engine that may be

incorporated into arbitrary fieldbus function

blocks. I intend to demonstrate this runtime

engine acting both as a component of an

existing function block as well as to

implement a function block that implements

arbitrary logical expressions. I also intend to

demonstrate applications for this control

block, including PID control, thermostat

control, alarm condition detection, and

discrete sequencing.

References

B. L. Evans. “Matlab and the

Ptolemy/Matlab Interface”, DSP Design

Group Meeting, University of California at

Berkeley, Berkeley, CA.

E. A. Lee. “Overview of the

Ptolemy Project”, ERL Technical Report

UCB/ERL No. M98/71, University of

California, Berkeley, CA 94720, November

23, 1998.

Fieldbus Foundation, “Foundation

Specification: Function Block Application

Process: Part 1, version 1.3”, Fieldbus

Foundation, Austin, Texas, 1998.

Fieldbus Foundation, “Foundation

Specification: Function Block Application

Process: Part 2, version 1.3”, Fieldbus

Foundation, Austin, Texas, 1998.

Fieldbus Foundation, “Foundation

Specification: Function Block Application

Process: Part 5, preliminary”, Fieldbus

Foundation, Austin, Texas, 1999.

K. Nielsen and W. Schmidt.

Performance of a Hardware-Assisted Real-

Time Garbage Collector, Sixth International

Conference on Architectural Support for

Programming Languages and Operating

Systems. 1994, San Jose, CA.

K. Nielsen. Issues in the Design and

Implementation of Real Time Java, Java

Developers Journal, http://www.sys-

con.com/java/iss1/real.htm

National Instruments, “LabView

User Manual”, National Instruments, Austin,

Texas, 1998.

R. Atherton. Moving Java To The

Factory , IEEE Spectrum, 25(12), December

1998

R. Valdes. Little Languages, Big

Questions, Dr. Dobbs Journal. September

1991

S. S. Battacharyya, P. K. Murthy,

and E. A. Lee, “Software Synthysis from

Dataflow Graphs”, Kluwer Academic

Publishers, Norwell, Mass, 1996.

Sun Microsystems Inc. The Java

Language Environment: A White Paper.

1995 Sun Microsystems Inc.: Mountain

View, CA.

