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Introduction/Motivation

• VLIW processors exploit instruction parallelism
while SIMD processors exploit data parallelism

• Over 90% of workloads in future expected to be
multimedia and DSP oriented

• To my knowledge no quantitative work has been
done in comparing commodity VLIW and SIMD
processors

• C6x is a VLIW DSP processor and Pentium II
with MMX is a SIMD processor



Department of ECE Laboratory for Computer Architecture

Methodology

• Measure the execution times of benchmarks on C6x
and Pentium II (MMX)

• Use execution time of Pentium II without  MMX code
as baseline

• Each benchmark will have three versions

› Pentium II code without MMX

› Pentium II code with MMX

› C6x code
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Tools

• C6x

› Stand-alone simulator for execution cycle count

› Optimizing compiler, simulator and debugger

• Pentium II

› Performance counters for execution statistics

› Intel C/C++ compiler

› Vtune for static code analysis
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Fallacies and Pitfalls

• Two completely different processors are being
evaluated; so how is an equivalent
playground/environment being created?

› First of all the memory hierarchies of both processors
are completely different -> Pentium II with two layers
of caches and DRAM, C6x with small L1 and SRAM

› To remove effects of memory latencies, data sets in
both cases have been made to fit on chip (translates to
fastest memory of each processor)

› Each benchmark is run multiple times over the pre-
loaded data set



Department of ECE Laboratory for Computer Architecture

Fallacies and Pitfalls (continued..)

• What is the importance of aggressive
optimization of code ? (particularly for DSPs)

› Using ordinary C code is not the best step -> for a
simple dot-product kernel C code is twice slower, and
for the DCT it is an order of magnitude slower than
optimized assembly

• Compilers can generate MMX code

› Sure, but only for marketing people

› It has been mentioned that compiler technology takes 5
to 10 years to catch up to an architecture
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Benchmarks - Kernels

• Dot Product

› Filtering, Matrix-Vector, Alpha Blending

• Autocorrelation

› Filtering applications

• FIR (Finite Impulse Response) filter
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Benchmarks - Applications

• Audio-effects

› Echo effects, Signal mixing and Filtering

• G.711 standard

› A-law to u-law and u-law to A-law

• ADPCM

› 16-bit to 4-bit compression
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Creation of Benchmarks

• Dot Product and Autocorrelation

› Hand-coded baseline and obtained MMX and VLIW
code from libraries

• FIR (Finite Impulse Response) filter

› Hand-coded baseline and MMX code and VLIW code
was obtained from libraries

› MMX code has been tweaked to get maximum
performance (needs four copies of filter coefficients !)
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Creation of Benchmarks

• Audio-effects and G.711

› Hand-coded all versions of the benchmarks

• ADPCM

› MMX could not be used here due to the fact that
computation on each data sample involved result of
computation on previous data sample

All versions of benchmarks produce same results
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Results - Kernels
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Results - Applications
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% of MMX - Speedup
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Effect of MMX on Clock cycles
per instruction
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Branch Characteristics
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Micro-ops per instruction
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Breakup of MMX instructions
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Future Work (by end of May)

• Create more applications

› In fact applications like Doppler radar and ECG
compression were tried, but C6x versions crashed ->
need to significantly alter source code

• Evaluate the new floating-point streaming SIMD
versus the C67x (waiting for a Pentium III processor
to arrive in our lab!)

• Measure other statistics relevant to MMX technology
(not related to this project per se, but for computer
architects)
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Conclusions

• Both SIMD and VLIW techniques provide significant
performance improvement over baseline code

• Compilers are very crucial for efficient code
development

• Benefit of C6x in applications is not fully achieved
unless application is hand-coded (this involves
month’s of development time)

• SIMD compilers are hardly existent, but hand-coding
is comparatively easy (with intrinsics)


