
Department of ECE Laboratory for Computer Architecture

Programmable VLIW and
SIMD architectures for DSP
and Multimedia Applications

Embedded Software Systems

Deepu Talla

Department of ECE Laboratory for Computer Architecture

Overview

• Introduction/Motivation

• Methodology

• Tools

• Fallacies and Pitfalls

• Benchmarks

• Results

• Future work and Conclusions

Department of ECE Laboratory for Computer Architecture

Introduction/Motivation

• VLIW processors exploit instruction parallelism
while SIMD processors exploit data parallelism

• Over 90% of workloads in future expected to be
multimedia and DSP oriented

• To my knowledge no quantitative work has been
done in comparing commodity VLIW and SIMD
processors

• C6x is a VLIW DSP processor and Pentium II
with MMX is a SIMD processor

Department of ECE Laboratory for Computer Architecture

Methodology

• Measure the execution times of benchmarks on C6x
and Pentium II (MMX)

• Use execution time of Pentium II without MMX code
as baseline

• Each benchmark will have three versions

› Pentium II code without MMX

› Pentium II code with MMX

› C6x code

Department of ECE Laboratory for Computer Architecture

Tools

• C6x

› Stand-alone simulator for execution cycle count

› Optimizing compiler, simulator and debugger

• Pentium II

› Performance counters for execution statistics

› Intel C/C++ compiler

› Vtune for static code analysis

Department of ECE Laboratory for Computer Architecture

Fallacies and Pitfalls

• Two completely different processors are being
evaluated; so how is an equivalent
playground/environment being created?

› First of all the memory hierarchies of both processors
are completely different -> Pentium II with two layers
of caches and DRAM, C6x with small L1 and SRAM

› To remove effects of memory latencies, data sets in
both cases have been made to fit on chip (translates to
fastest memory of each processor)

› Each benchmark is run multiple times over the pre-
loaded data set

Department of ECE Laboratory for Computer Architecture

Fallacies and Pitfalls (continued..)

• What is the importance of aggressive
optimization of code ? (particularly for DSPs)

› Using ordinary C code is not the best step -> for a
simple dot-product kernel C code is twice slower, and
for the DCT it is an order of magnitude slower than
optimized assembly

• Compilers can generate MMX code

› Sure, but only for marketing people

› It has been mentioned that compiler technology takes 5
to 10 years to catch up to an architecture

Department of ECE Laboratory for Computer Architecture

Benchmarks - Kernels

• Dot Product

› Filtering, Matrix-Vector, Alpha Blending

• Autocorrelation

› Filtering applications

• FIR (Finite Impulse Response) filter

Department of ECE Laboratory for Computer Architecture

Benchmarks - Applications

• Audio-effects

› Echo effects, Signal mixing and Filtering

• G.711 standard

› A-law to u-law and u-law to A-law

• ADPCM

› 16-bit to 4-bit compression

Department of ECE Laboratory for Computer Architecture

Creation of Benchmarks

• Dot Product and Autocorrelation

› Hand-coded baseline and obtained MMX and VLIW
code from libraries

• FIR (Finite Impulse Response) filter

› Hand-coded baseline and MMX code and VLIW code
was obtained from libraries

› MMX code has been tweaked to get maximum
performance (needs four copies of filter coefficients !)

Department of ECE Laboratory for Computer Architecture

Creation of Benchmarks

• Audio-effects and G.711

› Hand-coded all versions of the benchmarks

• ADPCM

› MMX could not be used here due to the fact that
computation on each data sample involved result of
computation on previous data sample

All versions of benchmarks produce same results

Department of ECE Laboratory for Computer Architecture

Results - Kernels

0 2 4 6 8 10

Dot Product

Autocorrelation

FIR

Speedup

PII-NoMMX PII-MMX (SIMD) C6x (VLIW)

0 2 4 6 8 10

Dot Product

Autocorrelation

FIR

Speedup

PII-NoMMX PII-MMX (SIMD) C6x (VLIW)

0 2 4 6 8 10

Dot Product

Autocorrelation

FIR

Speedup

PII-NoMMX PII-MMX (SIMD) C6x (VLIW)

Department of ECE Laboratory for Computer Architecture

Results - Applications

0 1 2 3 4 5

AudioEffects

ADPCM

G.711

Speedup

PII-NoMMX PII-MMX (SIMD) C6x (VLIW)

0 1 2 3 4 5

AudioEffects

ADPCM

G.711

Speedup

PII-NoMMX PII-MMX (SIMD) C6x (VLIW)

0 1 2 3 4 5

AudioEffects

ADPCM

G.711

Speedup

PII-NoMMX PII-MMX (SIMD) C6x (VLIW)

Department of ECE Laboratory for Computer Architecture

% of MMX - Speedup

0

1

2

3

4

5

6

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR
Aud

ioE
ffe

ct
s

ADPCM

G.7
11

S
p

e
e

d
u

p

0

20

40

60

80

100

%
 o

f
M

M
X

 i
n

st
ru

ct
io

n
s

Speedup % MMX instructions

0

1

2

3

4

5

6

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR
Aud

ioE
ffe

ct
s

ADPCM

G.7
11

S
p

e
e

d
u

p

0

20

40

60

80

100

%
 o

f
M

M
X

 i
n

st
ru

ct
io

n
s

Speedup % MMX instructions

0

1

2

3

4

5

6

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR
Aud

ioE
ffe

ct
s

ADPCM

G.7
11

S
p

e
e

d
u

p

0

20

40

60

80

100

%
 o

f
M

M
X

 i
n

st
ru

ct
io

n
s

Speedup % MMX instructions

Department of ECE Laboratory for Computer Architecture

Effect of MMX on Clock cycles
per instruction

0

0.2

0.4

0.6

0.8

1

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR
Aud

ioE
ffe

ct
s

ADPCM

G.7
11

C
P

I

0

20

40

60

80

100

%
 o

f
M

M
X

 i
n

st
ru

ct
io

n
s

No-MMX MMX % MMX instructions

0

0.2

0.4

0.6

0.8

1

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR
Aud

ioE
ffe

ct
s

ADPCM

G.7
11

C
P

I

0

20

40

60

80

100

%
 o

f
M

M
X

 i
n

st
ru

ct
io

n
s

No-MMX MMX % MMX instructions

0

0.2

0.4

0.6

0.8

1

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR
Aud

ioE
ffe

ct
s

ADPCM

G.7
11

C
P

I

0

20

40

60

80

100

%
 o

f
M

M
X

 i
n

st
ru

ct
io

n
s

No-MMX MMX % MMX instructions

Department of ECE Laboratory for Computer Architecture

Branch Characteristics

0

0.04

0.08

0.12

0.16

0.2

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR
Aud

ioE
ffe

ct
s

ADPCM

G.7
11

B
ra

n
ch

/i
n

st
ru

ct
io

n

0

20

40

60

80

100

%
 o

f
M

M
X

 i
n

st
ru

ct
io

n
s

No-MMX MMX % MMX instructions

0

0.04

0.08

0.12

0.16

0.2

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR
Aud

ioE
ffe

ct
s

ADPCM

G.7
11

B
ra

n
ch

/i
n

st
ru

ct
io

n

0

20

40

60

80

100

%
 o

f
M

M
X

 i
n

st
ru

ct
io

n
s

No-MMX MMX % MMX instructions

0

0.04

0.08

0.12

0.16

0.2

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR
Aud

ioE
ffe

ct
s

ADPCM

G.7
11

B
ra

n
ch

/i
n

st
ru

ct
io

n

0

20

40

60

80

100

%
 o

f
M

M
X

 i
n

st
ru

ct
io

n
s

No-MMX MMX % MMX instructions

Department of ECE Laboratory for Computer Architecture

Micro-ops per instruction

0
0.3
0.6
0.9
1.2
1.5

Dot
Pro

du
ct

Aut
oco

rre
la

tio
n FIR

Au
dioE

ffe
cts

ADPCM

G.711U
O

P
S

 p
er

 in
st

ru
ct

io
n

No-MMX MMX

0
0.3
0.6
0.9
1.2
1.5

Dot
Pro

du
ct

Aut
oco

rre
la

tio
n FIR

Au
dioE

ffe
cts

ADPCM

G.711U
O

P
S

 p
er

 in
st

ru
ct

io
n

No-MMX MMX

0
0.3
0.6
0.9
1.2
1.5

Dot
Pro

du
ct

Aut
oco

rre
la

tio
n FIR

Au
dioE

ffe
cts

ADPCM

G.711U
O

P
S

 p
er

 in
st

ru
ct

io
n

No-MMX MMX

Department of ECE Laboratory for Computer Architecture

Breakup of MMX instructions

0%

20%

40%

60%

80%

100%

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR

Aud
ioE

ffe
cts

G.7
11

Arithmetic Logical Multiply Shift Others

0%

20%

40%

60%

80%

100%

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR

Aud
ioE

ffe
cts

G.7
11

Arithmetic Logical Multiply Shift Others

0%

20%

40%

60%

80%

100%

Dot
 P

ro
du

ct
Aut

oc
or

re
lat

ion FIR

Aud
ioE

ffe
cts

G.7
11

Arithmetic Logical Multiply Shift Others

Department of ECE Laboratory for Computer Architecture

Future Work (by end of May)

• Create more applications

› In fact applications like Doppler radar and ECG
compression were tried, but C6x versions crashed ->
need to significantly alter source code

• Evaluate the new floating-point streaming SIMD
versus the C67x (waiting for a Pentium III processor
to arrive in our lab!)

• Measure other statistics relevant to MMX technology
(not related to this project per se, but for computer
architects)

Department of ECE Laboratory for Computer Architecture

Conclusions

• Both SIMD and VLIW techniques provide significant
performance improvement over baseline code

• Compilers are very crucial for efficient code
development

• Benefit of C6x in applications is not fully achieved
unless application is hand-coded (this involves
month’s of development time)

• SIMD compilers are hardly existent, but hand-coding
is comparatively easy (with intrinsics)

