
Programmable VLIW and SIMD Architectures
for DSP and Multimedia Applications

Deepu Talla
Laboratory for Computer Architecture

Department of Electrical and Computer Engineering
The University of Texas at Austin

deepu@ece.utexas.edu

Abstract – Digital Signal Processing (DSP) and multimedia workloads are expected to be

the dominant workloads on future computer systems. This is true in both low cost

embedded applications that use specialized microprocessors like DSPs and in the general-

purpose processor market. Very Long Instruction Word (VLIW) architectures have

multiple functional units to take advantage of vastly available Instruction Level

Parallelism (ILP) in such applications. Single Instruction Multiple Data (SIMD)

techniques operate on multiple data in a single instruction (exploiting data parallelism).

This paper proposes to evaluate the benefits of using the above two techniques for DSP

and multimedia applications. Using a modern commodity processor from each category –

Texas Instruments Inc.’s TMS320C6x (VLIW) and Intel’s Pentium II with MMX

(SIMD), several DSP and multimedia benchmarks will be evaluated.



1. Introduction

 Digital Signal Processing (DSP) and multimedia applications, where text becomes

the exception rather than the rule, are now starting to become exceedingly important for

computer systems as a dominant computing workload [5][6]. Dynamic multimedia

component technologies such as video conferencing, video authoring, visualization, 3D

graphics, animation, realistic simulation, speech processing and recognition, and

broadband communications hold a great promise. In contrast to traditional applications,

multimedia and DSP-rich applications will involve significant demands on the processor.

With an ever-increasing proportion of CPU cycles being used to run such applications, it

is pertinent to design machines that speed up programs that constitute a large portion of

computation time.

Current solutions for these compute-centric applications are based principally on

VLSI implementations except for certain control functions that may be implemented on a

programmable micro-controller. To make the implementation flexible and cost effective

over a variety of products and product generations, however, there is now a great deal of

interest in migrating functionality from application specific hardware into software

running on a programmable CPU or DSP.

The importance of multimedia technology, services and applications is being

widely recognized by microprocessor designers. A number of manufacturers are offering

multimedia processors that are claimed to be able to decode coded video streams in real-

time in software. Most of such processors like the Trimedia processor from Philips and

the Multimedia signal processor from Samsung usually have hardware assists for one or

more of the multimedia decoding functions. The market for these special purpose

multimedia processors will be in low cost embedded applications such as set-top boxes,



wireless terminals, digital TVs, and stand-alone entertainment devices such as DVD

players. A number of general-purpose CPU manufacturers are offering multimedia

enhanced versions of their CPUs for accelerating audio and video processing. The

UltraSPARC processor enhanced with the Visual Instruction Set (VIS) from Sun, and the

multimedia-enhanced MMX Pentium processors from Intel are examples. Such CPUs are

likely to take over multimedia and DSP functions like audio-video decoding/encoding,

modem, telephony functions, and network functions on a PC/workstation platform, along

with the general purpose computing they currently perform.

2. Objectives and Motivation

DSP and multimedia applications possess several distinguishing characteristics

than the normal workloads on desktop computing systems. Diefendorff and Dubey [5]

specified the following characteristics of the media-centric applications – real-time

response, processing of continuous-media types, significant fine and coarse grained

parallelism, high instruction-reference locality, and high network and memory bandwidth.

There is significant data and instruction level parallelism (ILP) that can be exploited in

these workloads.

Very Long Instruction Word (VLIW) architectures incorporate multiple functional

units in the data path to exploit the ILP in applications. A single instruction specifies

more than one concurrent operation (for example, two loads, two adds, two multiplies and

two shifts all in a single instruction). The instruction width is quite large (sometimes up to

8 times than normal architectures) and takes many bits to encode multiple operations.

VLIW processors rely on software to pack the collection of operations (compaction) and

in workloads with limited ILP, instruction bandwidth is wasted with no-operations placed



in the instruction. Examples of modern VLIW processors are from major DSP vendors –

TI’s TMS320C6x series, Analog Devices Inc.’s TigerSHARC and the joint venture of

Motorola and Lucent known as StarCore. For multimedia and DSP applications VLIW

processors seem to be an intuitive performance win over traditional single instruction per

cycle architectures. Figure (1) shows the CPU core of the C6x processor having eight

functional units in the data path.

Figure. 1. CPU core of the C6x processor (VLIW)

Single Instruction Multiple Data (SIMD) techniques traditionally have been

instruction set architecture extensions to general-purpose superscalar processors. Such

architectures exploit data parallelism as opposed to ILP – each instruction operates on

multiple data in a single instruction (for example, four loads or four additions, etc. but not

a combination of different operations). Many of the DSP and multimedia applications can

use vectors of packed 8-, 16- and 32-bit integers and floating-point numbers that allows

potential benefits of SIMD architectures like the MMX for the Pentium family of

processors and the Visual Instruction Set (VIS) extensions for the UltraSPARC

processors. Figure (2) shows the “multiply and accumulate” instruction operating on

multiple data in the case of MMX technology.



Figure. 2. Multiply and accumulate instruction operating on several data values

The objective of this project is to evaluate the effectiveness of VLIW and SIMD

architectures for DSP and multimedia applications. Choosing one modern representative

commodity processor from each category – TI’s C6x DSP processor as a VLIW

representative and Intel’s Pentium II with MMX as a SIMD representative, we propose to

assess DSP and multimedia workload performance on each processor.

3. Previous Work

Bhargava et al. evaluated the effectiveness of MMX instructions for DSP and

multimedia applications on a Pentium processor [1]. The authors evaluated four kernels

and four applications on a Pentium processor with MMX using VTune version 2.5. The

kernels consisted of a Finite Impulse Response (FIR) Filter, Infinite Impulse Response

(IIR) Filter, Fast Fourier Transform (FFT), and Matrix and Vector Arithmetic (matvec).

The suite of applications were JPEG image compression, image manipulation, G.722

speech encoding, and Doppler radar processing. Measured statistics include the execution

cycles, static and dynamic instruction count, amount of memory references and the

number of MMX instructions executed (including a breakup of MMX instruction

categories). The methodology adopted for this work was to compare efficient C code with



respect to MMX assembly code (obtained from Intel’s optimized libraries for signal

processing, image processing, etc.).

The amount of MMX instructions present in the benchmarks varied from 5% to

about 90% of the total dynamic instruction count. As a fair comparison, the authors

measured speedup of MMX code over optimized floating-point assembly code. Observed

speedups ranged from 1.25 to 6.6 in the case of kernels and 0.49 to 5.5 for the

applications. Two applications exhibited slowdowns, due to cases of excessive function

calls, switching from MMX to floating-point code and vice versa, etc. though the kernel

portions of the applications were sped up by MMX technology. It was observed that

MMX technology decreased the dynamic instructions and execution time, but increased

static code. Furthermore, code development using MMX meant resorting to library

functions (which in turn were robust with error checking code, but increasing execution

time) and the effects of precision create an additional burden on application developers.

Compiler technology is yet to catch up in generating efficient SIMD code from C code

(CodeWarrior claims to do it efficiently).

Lee et al. have proposed a suite of benchmarks for media processing and

evaluated performance characteristics on an experimental IBM 40x PowerPC core in [2].

The goals of their work was to accurately represent the workload of emerging multimedia

and communications systems by focussing on portable applications written in high-level

languages and to develop a tool that is effective for system evaluation as well as system

synthesis. Their suite MediaBench is composed of complete applications coded in high-

level languages. They gathered a suite of 19 applications culled from available image

processing, communications and DSP applications. Some of their benchmarks are JPEG,

MPEG, GSM 06.10, G.721 Voice compression, PGP encryption, Mesa – a 3D graphics

library, EPIC – an image compression utility, ADPCM, etc. However, they do not



evaluate any SIMD benefit or available parallelism in those benchmarks. They evaluated

the instruction cache variation, bus utilization and the instructions per cycle and

compared with general-purpose benchmarks from the SPEC suite. Performance/cost

variation was studied with cache sizes and the main observation in their work was that the

stress on both instruction and data caches was reduced in MediaBench workloads

compared to SPEC benchmarks. The main benefit of this reference is the collection of

benchmarks that can be evaluated on SIMD and VLIW architectures.

Ranganathan et al. have evaluated the performance of image and video processing

with general-purpose processor and media ISA extensions [3]. They used detailed

simulation of 12 benchmarks to study the effectiveness of current architectural features

and identify future challenges for those workloads. They presented 6 kernels and 6

applications. Kernels were – addition, blending, convolution, dot-product, scaling and

thresholding. Applications were – JPEG encoding (progressive and non-progressive),

JPEG decoding (progressive and non-progressive) and MPEG (coding and decoding).

They studied the VIS media extensions for in-order and out-of-order processor models

(RSIM – their simulator has this ability to model different configurations and also include

support for VIS). Their overall results were that both multiple issue and out-of-order issue

processors provide substantial reductions in execution time for most of their benchmarks.

Compared to a single-issue in-order processor, on the average, multiple issue improves

performs by a factor of 1.2X, while the combination of multiple issue and out-of-order

issue improves performance by a factor of 3.1X. The VIS media ISA extensions provided

significant performance improvements for all the benchmarks (1.1X to 7X). Furthermore

VIS was found to reduce dynamic instruction count, branch count, and number of

memory instructions. Studies were also performed on the impact of caches and software

prefetching. The major conclusion of their work is – on a single-issue in-order processor,



all of their benchmarks are primarily compute-bound. By using conventional ILP features

and the VIS instructions together, 5 of their benchmarks became memory-bound.

Increasing cache sizes showed no impact on several of their benchmarks. If software

prefetching was added to the code, all of their benchmarks reverted to being compute

bound.

Ongoing research in the Laboratory for Computer Architecture has had more of

evaluating characteristics of multimedia applications on a Pentium II processor. Major

conclusions of our studies indicate that branch frequency in multimedia applications is

less than half of normal SPEC workloads, media extensions (MMX) provide significant

improvement in overall performance and more functional units are desired for better

processing of available ILP. Preliminary studies were also performed on several DSP

kernels implemented on C6x and Pentium II processors.

In this project we propose to extend our work done on kernels onto several

multimedia and DSP applications such as speech compression, image processing, 3D

graphics, video processing, data encryption, etc. Tools to be used include – C6x stand-

alone simulator, full-simulator and debugger for the C6x and VTune 3.0 and Performance

counters for the Pentium II processor. Optimized assembly is easily obtainable for

kernels, but difficult to code for complete applications. CodeWarrior compiler is to be

evaluated for successful generation of MMX code from user written C code. Statistics for

the execution time, number of dynamic instructions, %MMX instructions (if applicable),

etc. will be gathered.



References:

[1] R. Bhargava, L. John, B. Evans and R. Radhakrishnan, “Evaluating MMX

Technology Using DSP and Multimedia Applications”, Proceedings of IEEE

Micro-31, pp. 37-46, Dec 1998.

[2] C. Lee, M. Potkonjak and W.H. Smith, “MediaBench: A Tool for Evaluating and

Synthesizing Multimedia and Communications Systems”, Proceedings of IEEE

Micro-30, pp. 330-335, Dec 1997.

[3] P. Ranganathan, S. Adve and N. Jouppi, “Performance of Image and Video

Processing with General-purpose Processors and Media ISA Extensions”, To

appear in the Proceedings of the 26th International Symposium on computer

Architecture, May 1999.

[4] Laboratory for Computer Architecture, “Ongoing Research”, Department of

Electrical and Computer Engineering, The University of Texas at Austin.

[5] K. Diefendorff and P.K. Dubey, “How Multimedia Workloads Will Change

Processor Design”, IEEE Computer Magazine, pp. 43-45, Sep 1997.

[6] C.E. Kozyrakis and D.A. Patterson, “A New Direction for Computer Architecture

Research”, IEEE Computer Magazine, pp. 24-32, Nov 1998.


