
Compiler Techniques for Very Long Instruction Word Embedded Processors

Abstract

As applications become more sophisticated, there is a push toward the adoption of high-

level languages for use in development of embedded software. This aids in the

development process by allowing for code which is much more portable, easier to

maintain and more straightforward to review. On the downside, compiler generated code

lacks the compactness and speed which can be achieved by assembly language written by

a highly skilled programmer. Although compiler optimization techniques have advanced

to reduce this gap, room for improvement still exists.

We will evaluate a very long instruction word (VLIW) processor. A VLIW processor can

perform multiple instructions on multiple data elements within a single clock cycle.

Additionally, scheduling is performed only by the compiler at compile time. The Texas

Instruments TMS320C6201 is a fixed point VLIW DSP processor capable of two

multiplies, two shifts, two address calculations, and two adds per clock cycle through two

separate data paths. Texas Instruments provides an optimizing C compiler for

TMS320C62x processors with the following standard optimization features: branch

optimizations / control flow simplification, alias disambiguation, copy propagation,

common sub-expression elimination, redundant assignment elimination, loop induction

variable optimizations / strength reduction, loop rotation, loop invariant code motion,

inline expansion of function calls, file level optimizations, data flow optimizations,

expression simplification, register variables, register tracking / targeting, and cost-based

register allocation.

Goals

We intend to evaluate the current state of the gap in efficiency between the Texas

Instruments compiler and hand generated assembly language code, and suggest

improvements to the compiler. In general this evaluation will be in the area of

vectorization operations as this is the only class of optimizations which are exclusive to

VLIW architectures. In order to achieve this end, we must become very familiar with the

TMS320C62 architecture. We will also become familiar with general compiler

optimization techniques specific to VLIW.

Tools

We will be using the Texas Instruments compiler and simulator available at UT. Ptolemy

will be used to model the test cases as well as generate C code for them.

References

A. W. Appel, Modern Compiler Implementation in C, Cambridge University Press, ISBN
0-521-58390-X, 1998.

D. Bursky, “VLIW architecture offers a ten-fold improvement in digital signal
processing. (TMS320C6201 from Texas Instruments Inc.),” Electronic Design, p. 52,
March 1997.

J. Davidson and S. Jinturkar, “Improving Instruction-level Parallelism by Loop Unrolling
and Dynamic Memory Disambiguation,” In MICRO-28: 28th Annual International
Symposium on Microarchitecture. Ann Arbor, MI, December 1995.

A. E. Eichenberger and E. S. Davidson, “Register Allocation for Predicated Code,” Proc.
IEEE of the International Sumposium on Microarchitecture, 1995.

S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang, “Code optimization techniques
for embedded DSP microprocessors,” Proceedings of the 32nd ACM/IEEE conference on
Design automation conference, p. 599, 1995.

S. A.Mahlke, W. Y.Chen, R. A.Bringmann, R. E.Hank, W. W. Hwu, B. Ramakrishna
Rau, and M. S.Schlansker, “Sentinel scheduling a model for compiler-controlled
speculative execution,” ACM Transactions on Computer Systems, vol. 11, no. 4, pp. 376-
408, November 1993.

S. A.Mahlke, W. Y.Chen, W. W. Hwu, B. Ramakrishna Rau, and M. S. Schlansker,
“Sentinel scheduling for VLIW and Superscalar Processors,” Proceedings of the fifth
international conference on Architectural support for programming languages and
operating systems, pp. 238 - 247, 1992.

C. Norris and L. Polluck, “An Experimental Study of Several Cooperative Register
Allocation and Instruction Scheduling Strategies,” Proc. IEEE of the International
Sumposium on Microarchitecture, 1995.

D. Pountain, “The word on VLIW,” Byte, April 1996, pp. 61-62.

Ptolemy Project, The Almagest: A Manual for Ptolemy, Ptolemy Project
(http://ptolemy.eecs.berkeley.edu/papers/almagest/index.html), 1997.

O. Sharp, “Compilers for parallel CPUs,” Byte, pp. 97-99, February 1994.

M. Silverthorn, L. Adams, and R. Scales, “Guidelines for Software Development
Efficiency on the TMS320C6000 VelociTI Architecture,” Texas Instruments, April 1998,
White Paper: SPRA434.

Texas Instruments, “TMS320C6x Code Development Flow,” Texas Instruments,
February 1999, Application Report: SPRA518.

Texas Instruments, Tutorial on TMS320C6000 VelociTI Architecture, 1998.

Texas Instruments, TMS320C62x/C67x Programmer's Guide, Texas Instruments,
February 1998.

Texas Instruments, TMS320C6000 Optimizing C Compiler User’s Guide, Texas
Instruments, July 1998.

