Matched Filtering

Dan Jacobellis | EE 445S I Spring 2022
$g(t)$ is a signal or pulse generated by the transmitter

$w(t)$ is additive noise

$x(t)=w(t)+\sum_{k=1}^{K} a_{k} g\left(t-T_{k}\right)$ is the received signal

$$
x(t)=w(t)+\sum_{k=1}^{K} a_{k} g\left(t-T_{k}\right)
$$

Contains copies of $g(t)$ which are

Goal: create a filter $h(t)$ which will help us to detect and characterize any copies of $g(t)$ that are present in $x(t)$.

Application: Radar/Sonar

- Transmitter and receiver are at known locations (possibly the same location).
- The transmitter sends a pulse $g(t)$ (often a chirp signal).
- The signal propagates through space, and may reflect off of objects
- The receiver listens for the reflections and records them into $x(t)$

Goal: create a filter $h(t)$ which will help us to detect and characterize any copies of $g(t)$ that are present in $x(t)$.

Application: Digital Communication

- Transmitter and receiver are at different (possibly unknown) locations
- The transmitter sends a sequence of pulses $g(t)$ (often a raised cosine).
- Pulses are known to be separated by $T_{\text {sym }}$

Goal: create a filter $h(t)$ which will help us to detect and characterize any copies of $g(t)$ that are present in $x(t)$.

The received signal is

$$
x(t)=w(t)+\sum_{k=1}^{K} a_{k} g\left(t-T_{k}\right)
$$

Application of a filter $h(t)$ can be analyzed in terms of its effects on $w(t)$ and $a_{k} g\left(t-T_{k}\right)$ separately

$$
\begin{aligned}
y(t) & =h(t) * x(t) \\
& =\underbrace{h(t) * w(t)}_{\text {filtered noise }}+\sum_{k=1}^{K} \underbrace{h(t) * a_{k} g\left(t-T_{k}\right)}_{\text {filtered pulses }}
\end{aligned}
$$

To make predictions about a_{k} or T_{k}, we want to minimize the power of the filtered noise while maximizing the remaining signal.

The optimal filter can be derived formally by maximizing the signal to noise ratio.
The optimal filter can be derived informally by considering the definition of convolution.

Informal Derivation

Question: what filter $h(t)$ should I apply to $x(t)$ to help me detect and characterize any copies of $g(t)$?

Ideally, the answer should be useful to both of the applications.
Simplification: assume that $x(t), g(t)$, and $h(t)$ must all be real. Then, convolution and cross-correlation have a simple relationship

$$
\begin{aligned}
& x(t) * g(t)=x(t) \star g(-t) \\
& x(t) \star g(t)=x(t) * g(-t)
\end{aligned}
$$

New question: what function $h(t)$ should I cross-correlate with $x(t)$ to help me detect and characterize any copies of $g(t)$?

Convolution and Cross-correlation

Why is it called cross-correlation? What is the relationship to correlation in probability/statistics?

In statistics, correlation measures similarity between two collections of samples.

What is correlation?

Let t_{c} be the current time. Imagine you collect some data.

$$
\begin{array}{lllllll}
\mathbf{k} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \cdots \\
\hline x[k]=\operatorname{abs}\left(t_{c}-11: 00 \mathrm{am}\right) & 9 & 51 & 26 & 122 & 250 & \cdots \\
\hline y[k]=\text { Number of people in line } & 5 & 3 & 2 & 1 & 2 & \cdots
\end{array}
$$

The data are drawn from random variables X and Y. The correlation between these random variables is

$$
\rho(X, Y)=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}}
$$

The sample correlation of the collected data is

$$
r(x, y)=\frac{1}{\sigma_{x} \sigma_{y}} \sum_{k=1}^{K}\left(x[k]-\mu_{x}\right)\left(y[k]-\mu_{y}\right)
$$

What is correlation?

$$
r(x, y)=\frac{1}{\sigma_{x} \sigma_{y}} \sum_{k=1}^{K}\left(x[k]-\mu_{x}\right)\left(y[k]-\mu_{y}\right)
$$

Correlation is an inner product. An inner product measures similarity of two signals.

$$
\text { Inner product of two discrete signals } x_{1}[n], x_{2}[n]=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[k]
$$

Inner product of two continuous signals $x_{1}(t), x_{2}(t)=\int_{\tau=-\infty}^{\infty} x_{1}(\tau) x_{2}(\tau) d \tau$
Positive correlation indicates similarity between x and y. Negative correlation indicates similarity between $-x$ and y. Noise will lower the correlation.

If $y[k]=\underbrace{a}_{>0} x[k]+\underbrace{w}_{\text {noise }}$ then $0<r<1$.

Convolution and cross-correlation as an inner product

The convolution operation is defined as:

$$
\begin{gathered}
x_{1}[n] * x_{2}[n]=\sum_{k=-\infty}^{\infty} x_{1}[k] x_{2}[n-k] \\
x_{1}(t) * x_{2}(t)=\int_{\tau=-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau
\end{gathered}
$$

The cross-correlation operation is nearly identical to convolution, but without the 'flip'

$$
\begin{gathered}
x_{1}[n] \star x_{2}[n]=\sum_{k=-\infty}^{\infty} \overline{x_{1}[k]} x_{2}[n+k] \\
x_{1}(t) \star x_{2}(t)=\int_{\tau=-\infty}^{\infty} \overline{x_{1}(\tau)} x_{2}(t+\tau) d \tau
\end{gathered}
$$

Convolution and cross-correlation as an inner product

An inner product takes two signals and returns a number.

$$
\text { Inner product of two continuous signals } x_{1}(t), x_{2}(t)=\int_{\tau=-\infty}^{\infty} x_{1}(\tau) x_{2}(\tau) d \tau
$$

Convolution and cross-correlation take two signals and return another signal

$$
\begin{aligned}
& x_{1}(t) * x_{2}(t)=\int_{\tau=-\infty}^{\infty} x_{1}(\tau) x_{2}(t-\tau) d \tau \\
& x_{1}(t) \star x_{2}(t)=\int_{\tau=-\infty}^{\infty} \overline{x_{1}(\tau)} x_{2}(t+\tau) d \tau
\end{aligned}
$$

The new signal is no longer a function of the original time variable. Instead it's a function of the relative time shift between the two signals.

For any particular time shift, cross-correlation tells us about about the similarity of $\overline{x_{1}(t)}$ and $x_{2}(t)$.

For any particular time shift, convolution tells us about the similarity of $x_{1}(t)$ and $x_{2}(-t)$.

Informal Derivation

Back to the question:
Assume that $x(t)$ and $g(t)$ are both real. What function should we cross-correlate with $x(t)$ to help detect and characterize any copies of $g(t)$?

Informal Derivation

Back to the question:
Assume that $x(t)$ and $g(t)$ are both real. What function should we cross-correlate with $x(t)$ to help detect and characterize any copies of $g(t)$?

$\mathrm{g}_{2}(\mathrm{t})$

Answer: The function that will produce a measure of similarity between $x(t)$ and $g(t-\tau)$ for every possible time shift τ.

Answer: We should cross-correlate $x(t)$ with the signal $g(t)$ that we want to detect.

Informal Derivation

What filter $h(t)$ should be applied to $x(t)$ to help detect and characterize any copies of $g(t)$?

$\mathrm{g}_{2}(\mathrm{t})$

Informal Derivation

What filter $h(t)$ should be applied to $x(t)$ to help detect and characterize any copies of $g(t)$?

Answer: The time-reversed filter $h(-t)$ should match the known signal $g(t)$.

Informal Derivation

What filter $h(t)$ should be applied to $x(t)$ to help detect and characterize any copies of $g(t)$?

Answer: The time-reversed filter $h(-t)$ should match the known signal $g(t)$.
Conclusion: The optimal filter is the matched filter: $h(t)=g(-t)$
Disclaimer: if we allow complex signals then $h(t)=\overline{g(-t)}$

received 4-PAM signal $x_{2}(\mathrm{t})$

matched filter $\mathrm{h}_{2}(\mathrm{t})$

Simulation

In [14]:

```
g = sinc(-2:(1/16):2);
E = sum(g.^2);
```

matched filter = pulse shaping filter =

In [52]:

```
symbols = reshape((dec2bin(uint8('meatball'))'),[28,2]);
    amplitudes = upsample(2*bin2dec(serialized_data)-3,16);
    pulses = conv(amplitudes,g/E,'same');
    x = pulses + 0.2*randn(size(pulses));
```


Simulation

In [54]:

```
quantize = @(x) 2*(round(0.5*x + 1.5)-1.5);
h = E*ones(16,1)/16;
y = conv(x,h,'same');
yT = quantize(downsample(y,16));
```


In [57]:

```
number_errors = sum(abs((yT - downsample(amplitudes,16)))>0)
```

number_errors =

Simulation

In [58]:

```
h = g;
y = conv(x,h,'same');
y\top = quantize(downsample(y,16));
```


In [61]: number_errors $=\operatorname{sum}\left(\operatorname{abs}\left(\left(\mathrm{y}^{\top}-\right.\right.\right.$ downsample(amplitudes, 16) $\left.\left.)\right)>\theta\right)$
number_errors =

Formal Derivation

Application of a filter $h(t)$ can be analyzed in terms of its effects on $w(t)$ and $a_{k} g\left(t-T_{k}\right)$ separately

$$
\begin{aligned}
y(t) & =h(t) * x(t) \\
& =\underbrace{h(t) * w(t)}_{\text {filtered noise }}+\sum_{k=1}^{K} \underbrace{h(t) * a_{k} g\left(t-T_{k}\right)}_{\text {filtered pulses }}
\end{aligned}
$$

To make predictions about a_{k} or T_{k}, we want to minimize the power of the filtered noise while maximizing the remaining signal.

We want to maximize the signal to noise ratio at the times T_{k} Where a copy of $g(t)$ is present.

Formal Derivation

$$
\begin{aligned}
y(t) & =h(t) * x(t) \\
& =\underbrace{h(t) * w(t)}_{\text {filtered noise }}+\sum_{k=1}^{K} \underbrace{h(t) * a_{k} g\left(t-T_{k}\right)}_{\text {filtered pulses }} \\
\left|g_{0}(t)\right|^{2} & =|g(t) * h(t)|^{2}=\text { output signal power } \\
E\left[n^{2}(t)\right] & =E\left[(w(t) * h(t))^{2}\right]=\text { output noise power }
\end{aligned}
$$

Goal: maximize the peak pulse SNR

$$
\eta=\frac{\text { Peak signal power }}{\text { Average noise power }}=\frac{\left|g_{0}(t)\right|^{2}}{E\left[n^{2}(t)\right]}
$$

Formal Derivation

We don't know the amplitude values of $n(t)$ but we can find its power spectrum.

$$
\begin{aligned}
P_{N}(f) & =|N(f)|^{2} \\
& =N(f) \overline{N(f)} \\
& =\mathcal{F}\{n(t) * \overline{n(t)}\} \\
& =\mathcal{F}\left\{R_{n}(t)\right\}
\end{aligned}
$$

For the two-sided random noise signal $n(t)$, the Fourier transform may not exist, but its power spectrum does.

Formal Derivation

For a zero-mean Gaussian random process $n(t)$ with variance σ^{2}, the autocorrelation is $R_{n}(t)=\sigma^{2} \delta(t)$

Therefore, its power spectrum is $P_{n}(f)=\mathcal{F}\left\{R_{n}(t)\right\}=\sigma^{2}$
The noise at the output of the matched filter is $n(t)=w(t) * h(t)$
Its power spectrum is

$$
S_{N}(f)=S_{W}(f) S_{H}(f)=\frac{N_{0}}{2}|H(f)|^{2}
$$

Average noise power $=E\left[n^{2}(t)\right]=\int_{-\infty}^{\infty} S_{N}(f) d f=\int_{-\infty}^{\infty} \frac{N_{0}}{2}|H(f)|^{2} d f$

Formal Derivation

$$
\begin{gathered}
g_{0}(t)=g(t) * h(t) \\
G_{0}(t)=H(f) G(f) \\
\left|g_{0}(t)\right|^{2}=\left|\mathcal{F}^{-1}\left\{G_{0}(f)\right\}\right|^{2} \\
=\left|\mathcal{F}^{-1}\{H(f) G(f)\}\right|^{2} \\
=\left|\int_{-\infty}^{\infty} H(f) G(f) e^{j 2 \pi f T} d f\right|^{2} \\
\eta=\frac{\text { Peak signal power }}{\text { Average noise power }}=\frac{\left|g_{0}(t)\right|^{2}}{E\left[n^{2}(t)\right]}=\frac{\left|\int_{-\infty}^{\infty} H(f) G(f) e^{j 2 \pi f T} d f\right|^{2}}{\frac{N_{0}}{2} \int_{-\infty}^{\infty}|H(f)|^{2} d f}
\end{gathered}
$$

Formal Derivation

$$
\eta=\frac{\text { Peak signal power }}{\text { Average noise power }}=\frac{\left|\int_{-\infty}^{\infty} H(f) G(f) e^{j 2 \pi f T} d f\right|^{2}}{\frac{N_{0}}{2} \int_{-\infty}^{\infty}|H(f)|^{2} d f}
$$

Question: How do we maximize η ?

Formal Derivation

$$
\eta=\frac{\text { Peak signal power }}{\text { Average noise power }}=\frac{\left|\int_{-\infty}^{\infty} H(f) G(f) e^{j 2 \pi f T} d f\right|^{2}}{\frac{N_{0}}{2} \int_{-\infty}^{\infty}|H(f)|^{2} d f}
$$

Question: How do we maximize η ?
Answer: Schwarz inequality can be used to determine an upper bound for the inner product.

$$
\begin{gathered}
|\langle u, v\rangle|^{2} \leq|u|^{2}|v|^{2} \\
\left|\int \phi_{1}(x) \phi_{2}(x) d x\right|^{2} \leq \int\left|\phi_{1}(x)\right|^{2} d x \int\left|\phi_{2}(x)\right|^{2} d x
\end{gathered}
$$

Formal Derivation

$$
\eta=\frac{\text { Peak signal power }}{\text { Average noise power }}=\frac{\left|\int_{-\infty}^{\infty} H(f) G(f) e^{j 2 \pi f T} d f\right|^{2}}{\frac{N_{0}}{2} \int_{-\infty}^{\infty}|H(f)|^{2} d f}
$$

Question: How do we maximize η ?
Answer: Schwarz inequality can be used to determine an upper bound for the inner product.

$$
\begin{gathered}
|\langle u, v\rangle|^{2} \leq|u|^{2}|v|^{2} \\
\left|\int \phi_{1}(x) \phi_{2}(x) d x\right|^{2} \leq \int\left|\phi_{1}(x)\right|^{2} d x \int\left|\phi_{2}(x)\right|^{2} d x
\end{gathered}
$$

After some simplification, the maximum SNR becomes

$$
\eta_{\max }=\frac{2}{N_{0}} \int_{-\infty}^{\infty}|G(f)|^{2} d f
$$

In lecture assignment 4

In-Lecture Assignment Related to Homework \#6 Consider performing an iterative maximization of

$$
J(x)=8-x^{2}+6 \cos (6 x)
$$

via the steepest descent algorithm (JSK equation (6.5) on page 116) with the sign on the update reversed from negative to positive so that the algorithm will maximize rather than minimize; i.e.

$$
x[k+1]=x[k]+\mu \frac{d J(x)}{d x}
$$

where $x=x[k]$

In lecture assignment 4

Visualize and analyze the shape of the objective function $J(x)$.

1. Plot $J(x)$ for $-5<x<5$. Give the Matlab code for your answer.
2. Describe the plot.
3. How many local maxima do you see?

In [123]:

```
J = @(x) 8 - x.^2 + 6* cos(6*x);
x = linspace(-5,5,1000);
plot(x,J(x),'linewidth',2');
```


In lecture assignment 4

Implement the steepest descent algorithm in Matlab with $x_{0}=0.7$.

1. To what value does the steepest descent algorithm converge?
2. Is the convergent value of x in the global maximum of $J(x)$? Why or why not?

In [125]:

```
dJdx = @(x) -2*x - 36*sin(6*x);
N=50; % number of iterations
mu=0.001; % algorithm stepsize
x=zeros(1,N); % initialize sequence of x values to zero
x(1)=0.7; % starting point x(1)
for k=1:N-1
    x(k+1)= x(k) + (dJdx(x(k)))*mu; % update equation
end
x(end)
```

ans $=$
1.0376

In lecture assignment 4

In [126]: $\operatorname{stem}(x)$

