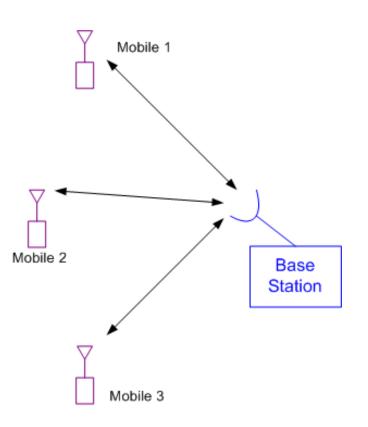


Code Division Multiple Access for Wireless Communications

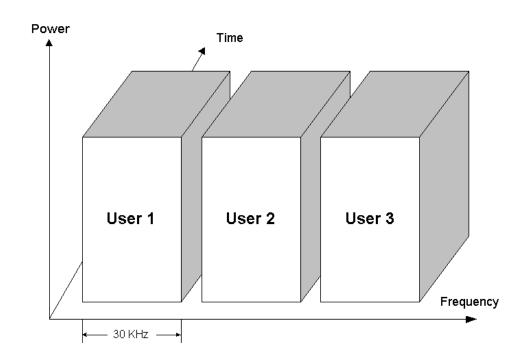

Prof. Jeffrey G. Andrews

Wireless Networking and Communications Group (WNCG) Electrical and Computer Engineering Dept. University of Texas at Austin

What is Multiple Access?

- Multiple users want to communicate in a common geographic area
- Cellular Example: Many people want to talk on their cell phones. Each phone must communicate with a base station.
- Imagine if only one person could talk on their cell phone at a time!
- **Problem**: How should we share our resources so that as many users as possible can communicate simultaneously?

Freq. Division Multiple Access (FDMA)

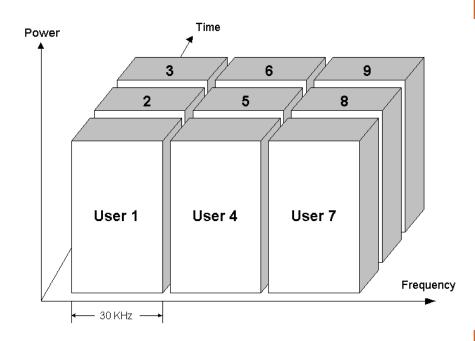

• AMPS (analog), the First Generation (1G) used 30 KHz for each user.

• Pros

- Very Simple to design
- Narrowband (no ISI)
- Synchronization is easy
- No interference among users in a cell

• Cons

- Narrowband interference
- Static spectrum allocation
- ➢ Freq. reuse is a problem
- High Q analog filters or large guard band required



Time Division Multiple Access (TDMA)

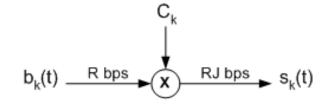
- Can also partition time: users take turns using the channel
- IS-54 (2G) used same 30 KHz channels, but with three users sharing them (3 slots)
- GSM has 8 slots/270 KHz
- Pros
 - Better suited for digital
 - Often gets higher capacity (3 times higher here)
 - ➢ Relaxes need for high Q filters

• Cons

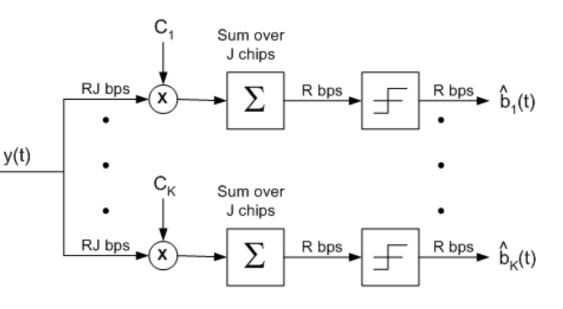
- Strict synchronization and guard time needed
- Still susceptible to jamming, other-cell interference
- > Often requires equalizer

Alternative to FDMA and TDMA?

- What if we could allow users to share time and frequency?
 - Eliminates need for tight synchronization among many different users
 - Eliminates need for expensive analog filters
 - > May have favorable impact on capacity (?)
- But:
 - ➤ How do we separate the users?
 - > Won't they interfere with each other?



Code Division Multiple Access (CDMA)

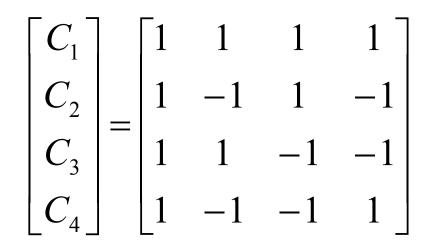

- $b_k(t)$: bits for user k C_k : spreading code J: "spreading factor" $s_k(t)$: transmitted signal for user k
- *y(t)*: received signal for all users

$$y(t) = \sum_{k=1}^{K} h_k(t) * s_k(t) + n(t)$$

 $h_k(t)$: channel impulse response for user kn(t): noise

The Basic CDMA Transmitter (User k)

The Basic CDMA Receiver (K Users)

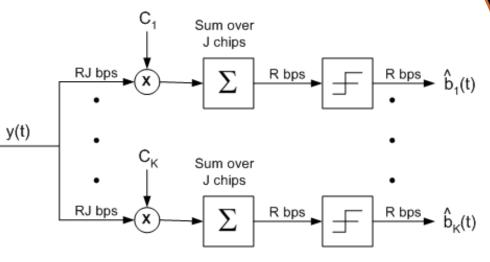

Spreading Codes

- The spreading code C_k must be unique for each user.
- Ideally, they are orthogonal to one another, i.e.

 $C_i, C_k > = 0, \text{ unless } i = k \\ C_i, C_k > = J, \quad \text{if } i = k$

- Example: Walsh Codes
 - ➢ For a spreading factor J=4, there are 4 Walsh codes
 - In general there are always J
 Walsh codes, as long as

 $J = 2, 4, 8, 16, 32, 64, 128, \dots$



4-Ary Walsh Codes

How Walsh Codes Work

- Assume a noiseless channel with unity gain
- Walsh codes allow four users to be transmitted *at the same time and frequency* using four times the number of bits

The Basic CDMA Receiver (K Users)

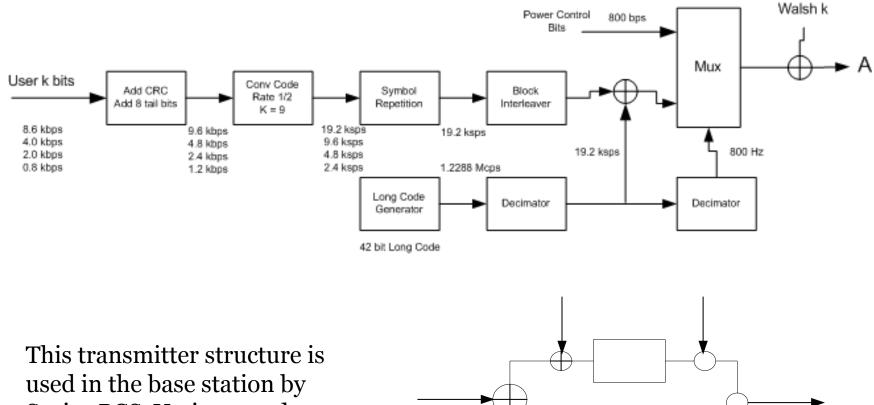
$$y[n] = C_{1}[n]b_{1} + C_{2}[n]b_{2} + C_{3}[n]b_{3} + C_{4}[n]b_{4}, \qquad \hat{b}_{1} = \operatorname{sgn}\left(\sum_{n=1}^{J} C_{1}[n]y[n]\right)$$
$$\Rightarrow \hat{b}_{1} = \operatorname{sgn}\left(\sum_{n=1}^{J} \underbrace{C_{1}[n]C_{1}[n]b_{1}}_{=J} + \underbrace{C_{1}[n]C_{2}[n]b_{2}}_{=0} + \underbrace{C_{1}[n]C_{3}[n]b_{3}}_{=0} + \underbrace{C_{1}[n]C_{4}[n]b_{4}}_{=0}\right)$$
$$= \operatorname{sgn}\left(\sum_{n=1}^{N} Jb_{1}\right) = b_{1}$$

A numerical example

Received signal: $y[n] = C_1[n]b_1 + C_2[n]b_2 + C_3[n]b_3 + C_4[n]b_4$ $\begin{bmatrix} y[1] \quad y[2] \quad y[3] \quad y[4] \end{bmatrix} = \begin{bmatrix} 2 & -2 & 2 & 2 \end{bmatrix}$

Decoded Bits :

$$\hat{b}_{1} = \operatorname{sgn}\left(\sum_{n=1}^{J} C_{1}[n]y[n]\right) = \operatorname{sgn}(4) = 1, \qquad \hat{b}_{2} = \operatorname{sgn}\left(\sum_{n=1}^{J} C_{2}[n]y[n]\right) = \operatorname{sgn}(4) = 1$$
$$\hat{b}_{3} = \operatorname{sgn}\left(\sum_{n=1}^{J} C_{3}[n]y[n]\right) = \operatorname{sgn}(-4) = 1, \qquad \hat{b}_{4} = \operatorname{sgn}\left(\sum_{n=1}^{J} C_{4}[n]y[n]\right) = \operatorname{sgn}(4) = 1$$



Properties of Walsh Codes

- There are some issues with Walsh Codes
 - Synchronization of all users is required
 - In a multipath channel, delayed copies may be received which are *not* orthogonal any longer!
 - Only J codes exist with a bandwidth expansion of J, so as far as capacity, we are right back where we started with TDMA and FDMA!
- Advantages relative to TDMA and FDMA
 - > No guard bands or guard times are typically required
 - No equalizer is typically required, when a RAKE receiver is used

The IS-95 CDMA (2G) Forward Link

used in the base station by Sprint PCS, Verizon, and worldwide

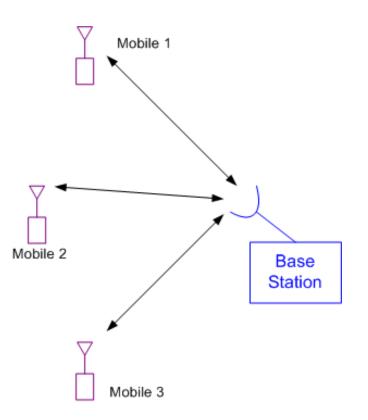
Total spreading gain J = 128

The IS-95 Reverse Link

- The reverse link is quite different
 - Instead of Walsh Codes, "psuedorandom noise" (PN) codes
 - PN codes are deterministic Bernoulli sequences of {-1,+1}
 - ➤ While not orthogonal, they have low *cross-correlation*, e.g.

$$\approx 1$$
, unless i = k
 $= J$, if i = k

- These codes have good properties even when not synchronized
- > Very strong error correcting codes make up the difference

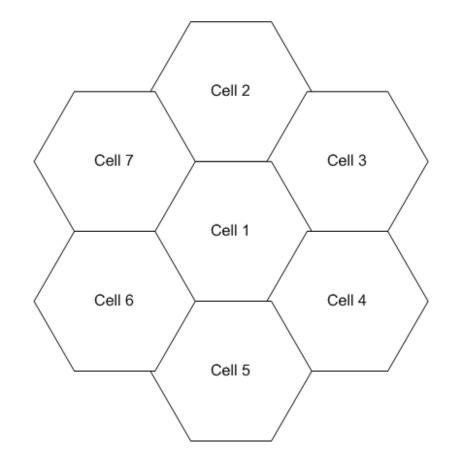


The Near-Far Problem

- Users may be received with very different powers:
 - Users near the base station are received with high power
 - Users far from the base station are received with low power
 - For a path loss exponent of 4 and a cell size of 1 km, example:

$$\frac{P_2}{P_1} = \left(\frac{1000}{50}\right)^4 = 160,000 = 52dB!$$

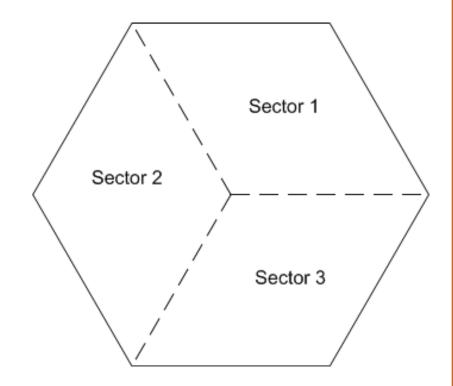
- Nearby users will completely swamp far away users
- Solution: Power Control


CDMA – Issues

- So far, CDMA looks like a step backwards:
 - Tight synchronization is required to use orthogonal codes, which then break in a multipath channel anyway
 - Quasi-orthogonal codes cause self-interference, which dominates the performance in most CDMA systems
 - Near-far problem is a serious hindrance, requiring fast and accurate power control (that uses up bits we could otherwise send information with)
 - And for all this, the required bandwidth is now J times larger than it was before, so there doesn't appear to be a capacity gain
 - ➤ How did Qualcomm convince people to use this stuff?

Interference Averaging

- It turns out there are serious advantages to CDMA in a multicell system
- Unlike FDMA and TDMA, CDMA does not rely on orthogonal frequency and time slots that are compromised by neighboring cells
- CDMA systems can reuse frequencies every cell! (FDMA and TDMA usually need *reuse factors* of 4 - 7)
- Capacity increased 4-7 fold


Voice Activity

- In TDMA and FDMA systems:
 - If a user doesn't have anything to send, the time/frequency slot allocated to them is wasted
 - It is typically very difficult to dynamically allocate time and frequency slots
- In CDMA systems:
 - If a user doesn't have anything to send, it causes less interference to other users of the system
 - > Typically, each user needs to transmit less than half the time
 - Since interference-limited, this doubles the capacity

Sectorized Antennas

- Cells can use directional antennas to "sectorize" the cell
- At right, 120 degree antennas create 3-sector cells – very common
- For CDMA, this reduces the interference by a factor of three
 - Capacity is increased by a factor of three!
- FDMA/TDMA also use sectored antennas, but just to decrease reuse distance

Capacity Comparison

- Comparing the capacity of TDMA/FDMA/CDMA is very controversial
- In 1991, a famous (notorious?) Qualcomm paper claimed that due to voice activity, frequency reuse, and sectorization, CDMA increased capacity by:

➤ Factor of 18 relative to AMPS

➢ Factor of 6 relative to US TDMA (and similar for GSM)

- This turned out to be optimistic, about 1/3 of this gain actually happened (still depends who you ask)
- Still, twice as many users is nothing to snear at!
- All 3G systems use CDMA for multiple access

The Future of CDMA

- CDMA has overcome most cynicism to dominate the worldwide wireless voice market
- What about data services? Scheduling vs. Inteference Averaging
- CDMA appears to be an underdog for 4G, but still may win
- Ongoing research on CDMA
 - Increase capacity by joint decoding (multiuser detection & interference cancellation)
 - Applying CDMA to other applications: optical CDMA, ad hoc networks, dense wireless LANs
 - * "MultiCDMA": multiple antenna CDMA, multicarrier CDMA, multicode CDMA

Further Reading

- 1. Prof. Andrews's webpage (research topics, a number of multiple access and CDMA papers):
 - http://www.ece.utexas.edu/~jandrews/
- 2. A tutorial:
 - R. Kohno, R. Meidan, and L. Milstein, "Spread spectrum access methods for wireless communications", *IEEE Comm. Magazine*, Jan. 1995.
- 3. The Qualcomm capacity paper
 - ➢ K.S. Gilhousen et al, "On the capacity of a cellular CDMA system," *IEEE Trans. on Vehicular Tech.*, May 1991.
- 4. The definitive text (theoretical)
 - A. Viterbi, CDMA: Principles of Spread Spectrum Communication, Addison Wesley, 1995.