The University of Texas at Austin
Dept. of Electrical and Computer Engineering
Midterm #1

Date: October 14, 2016 Course: EE 445S Evans

Name: Spirou et Fantasio

Last, First

* The exam is scheduled to last 50 minutes.

* Open books and open notes. You may refer to your homework assignments and the
homework solution sets.

* Calculators are allowed.

* You may use any standalone computer system, i.e. one that is not connected to a network.
Please disable all wireless connections on your computer system(s).

* Please turn off all cell phones.

* No headphones allowed.

* All work should be performed on the quiz itself. If more space is needed, then use the
backs of the pages.

* Fully justify your answers. If you decide to quote text from a source, please give the
quote, page number and source citation.

Problem | Point Value | Your score Topic
1 28 Filter Analysis
2 24 Sampling
3 27 Filter Design
4 21 Potpourri
Total 100




Problem 1.1 Filter Analysis. 28 points.

A discrete-time linear time-invariant (LTI) filter is described by the following transfer function
H(z)=by+ bz +by,z %2+ by z73

where bo, b1, b, and b; are the filter coefficients. hln]

(a) Give a formula in discrete time for the impulse response /[n].
Plot h[n]. 3 points. [See Lecture slide 5-9; Homework 1.1 & 2.1]

hn] = by 8[n] + by 8[n — 1] + b, 8[n — 2] + b 8[n — 3] i |- l .

(b) Is the filter a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? 3 points.

FIR filter. There are no poles in the transfer function other than artificial poles at the
origin. Also, from the answer to part (¢) below, the output only depends on current and
previous input values— there is no feedback. [See Lectures 5&6; Homeworks 1,2&3; Lab 3]

(c) Give a formula in discrete time for the output y[n] in terms of the input x[#] including the initial
conditions. 3 pOinl‘S. [See Lecture slides 3-9, 5-4, 5-6 & 5-11; Homeworks 1&2; Lab 3]

y[n] = by x[n] + byx[n — 1] + b, x[n — 2] + b3 x[n — 3]
Initial conditions must be zero to satisfy LTI properties: x[—1] = x[-2] = x[-3] = 0

(d) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points.

[See Lecture slides 3-15 & 5-4]

(e) Give a formula for the discrete-time frequency response of the filter. 3 points.
[See Lecture slide 5-11, 5-12, 5-13, 5-14, 5-17 & 5-18; Homework 2.1]

Substituting z = exp(j ) into H(z) is valid because the region of convergence of H(z) isz # 0
which includes the unit circle. Another justification is that all FIR filters are BIBO stable.
Hfeq(w) = H(E®) = by + by e + by e 5 + by 73
(f) Give all possible conditions on the coefficients for the filter to have constant group delay. 6 points.
[See Lecture slides 5-15, 5-17 & 5-18; Homework 1.3, 2.1, 2.3 & 3.2]
1. Filter coefficients are even symmetric w/r to their midpoint, i.e. by = b; and b, = b,
2. Filter coefficients are odd symmetric w/r to their midpoint, i.e. by = —b3; and b; = —b,

(g) Using only values of +1 and -1, give values for the filter coefficients for a lowpass magnitude
response. 4p0ints [See Lecture slides 3-8, 3-14, 5-15, 5-17 & 5-18; Homework 2.1(a)]

1. Filter coefficients are all +1. Gives an averaging filter scaled by 4. Lowpass. —-OR-
2. Filter coefficients are all -1. Gives an averaging filter scaled by -4. Lowpass.



Problem 1.2 Sampling. 24 points.

Consider a two-sided continuous-time cosine signal with frequency fj in Hz given by
x(t) = cos(2mfyt)
(a) Plot the continuous-time Fourier transform of x(¢). 6 points. X(f) = %8 f+fo)+ %6(f —fo)

X(]() [See Homework 0.2]

(b) Plot the continuous-time Fourier transform of the result of sampling x(#) at a sampling rate of f;
assuming that the Sampling Theorem has been satisfied, i.e. f; > 2 fy. 6 points.
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(c) Plot the continuous-time Fourier transform of x(¢) sampled at a sampling rate of f; assuming that
Jo<[fs <2 fy, which would not satisfy the Sampling Theorem. 6 points. Let f; = 1.5fy below.
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(d) In part (c), give a formula for the continuous-time frequency that would result after trying to
reconstruct x(¢) from its sampled version. 6 points.

[See Lecture slides 4-4, 4-5 & 4-7;
lecture 4 demos; Homework 0.3]

Sampling theorem says f; > 2 fimax Or equivalently fnax <2 fi. Apparent frequency is f; — fo.

Alternate response: Reconstruction applies a lowpass filter that passes frequencies from -2
fs to 2 f; which means that the frequency that would result is £; — fo.

Homework 0.3]



Problem 1.3 Filter Design. 27 points.

People suffering from tinnitus, or ringing of the ears, hear a tone in their ears even when the
environment is quiet. The tone is generally at a fixed frequency in Hz, denoted as f..

Filtering music to remove as much as possible an octave of frequencies from f to f, that contains f; as
its center frequency can provide relief of tinnitus symptoms.

This problem will ask you to design a sixth-order discrete-time infinite impulse response (IIR) filter to
remove the octave of frequencies. The sampling rate is f; where f; > 4 f5.

[See Lecture 6 in-class discussion on tinnitus; Homework 1.2(c) solution for discussion of octaves]
(a) Give formulas for f; and f; in terms of f; given that f. = 2 (fi+ f2). 6 points.

To cover an octave of frequencies, f; = 2 f;.
Coupled with f. =% (fi+ f2), we have f; = (2/3) f. and f, = (4/3) f.

(b) Give formulas for discrete-time frequencies w;, w. and w, that correspond to continuous-time

frequencies f1, f. and f, respectively. 3 points. [See Lecture slide 1-10; Homework 0.4]

wq = 211& and w, = Zn& and w, = an—2

S S S
(c) Give formulas in terms of w;, w. and w, for the pole and zero locations for the sixth-order discrete-
time IIR filter. Assume that the gain is one. 12 points. [See Lecture 6-6, 6-7 & 6-8 slides; Lab 3]

A sixth-order discrete-time IIR filter has six poles and six zeros. Here, the gain Cis 1.
Zeros have to be real-valued or occur in conjugate symmetric pairs. Same with the poles.

Filter should attenuate frequencies between w; and w; as well as between -, and -w,
Bandstop filter. Zeros on or near the unit circle indicate the stopband.
Poles inside and near the unit circle indicate the passband(s).

Zeros would be at frequencies w;, . and w; as well as their negative values.
Because f; > 4 f,, w, will be between 0 and /2.

Zeros: e]'wZ’ e].“)c’ e].wl’ e_jwll e_].wc' e_in
2)o1 1 e i(Z)01 oi(3)0 (3) w2
Poles: re’\2)*1 r re™\2)®1 re™\3)°2 _y and re’\3/? wherer = 0.9

(d) Draw the pole-zero diagram. 6 points. Example plotted for f. = 6000 Hz and f; = 44100 Hz.
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[Lecture 5-13, 5-14, 6-6, 6-7, 6-19, 6-20 & 6-21 slides; Lecture 6 demos; Homework 3.1&3.3; Lab 3]



Problem 1.4. Potpourri. 21 points.

(a) Oversampling generally gives a higher signal quality but at a higher implementation complexity.
If we increase the sampling rate by a factor of K, analyze the increase in implementation
complexity for finite impulse response (FIR) filtering in terms of

1.

Multiplication operations per second. 3 points.  [See Lecture slide 5-4; Reader Handout N; Lab 3]

FIR filter of N coefficients requires N multiplication operations to compute one output
sample given a new input sample. Filter runs at the sampling rate f; and hence
computes /N f; multiplications/s. If the sampling rate is increased by a factor of K, then
the multiplication operations will increase by a factor of K.

Memory reads per second. 3 points. [See Lecture slides 5-4 & 5-24; Reader Handout N; Lab 3]

FIR filter must read N coefficients and N current/previous input values in computing
one output sample. Filter runs at the sampling rate f; and hence reads 2 N f; words/s. If
the sampling rate is increased by a factor of K, then the memory reads per second will
increase by a factor of K.

(b) In lab #2, you implemented a cosine generator on the digital signal processing board in lab using a
lookup table to store one period of values for [See Lecture slides 1-10 to 1-16; Homework 0.4; Lab 2]

1.

x[n] = cos(wyn)
Assuming the sampling theorem has been satisfied, i.e. f; > 2 fj, give the range of values that
o can take. Please be sure to include negative, zero and positive frequencies. 3 points.
Wy = Zn;—‘s’ and f, < % fs which means that -t < wo <m
Note: The discrete-time frequency domain is periodic with period 2 .

What is the discrete-time period in samples for x[n]? 3 points.

wo = 21'r;rl = Zn% where N and L are integers with common factors removed.
s

Discrete-time periodicity is L. See Discrete Time Periodicity handout from Lecture 1.

Describe a way to use a smaller lookup table to save memory. 3 points.
If the discrete-time period L is even, the cosine could be computed over half of the
period and the half can be determined through symmetry.

If the discrete-time period L is a multiple of four, cosine could be computed over one-
fourth of the period and the rest of the samples can be determined through symmetry.

If the discrete-time period L is a multiple of eight, cosine could be computed over one-
eighth of the period and the rest of the samples can be determined through symmetry.

(c) If discrete-time signal cos(wo 7) is input to a squaring block, what discrete-time frequencies will
appear on the output? 6 points. [See Lecture slides 3-7 & 3-8; Homework 1.3]

Output will have a component of 0 frequency (DC) and a component at a frequency of 2 wy:

1 1
cos?(wgn) = = + = cosQwyn)

2 2

If 2 wy > 7, then the component at 2 w, will alias. Consider cos(rwr) = (-1)". Output of the
squaring block is 1, which has discrete-time frequency components of 0, 2w, etc.



