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• The exam is scheduled to last 50 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network.  

Please disable all wireless connections on your computer system(s). 
• Please turn off all cell phones. 
• No headphones allowed. 
• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 
• Fully justify your answers.  If you decide to quote text from a source, please give the 

quote, page number and source citation. 
 
 
 
 

Problem Point Value Your score Topic 
1 28  Filter Analysis 
2 24  Sampling 
3 27  Filter Design 
4 21  Potpourri 

Total 100   
 

 



Problem 1.1 Filter Analysis.  28 points. 
A discrete-time linear time-invariant (LTI) filter is described by the following transfer function 

𝐻 𝑧 = 𝑏! +   𝑏!  𝑧!! + 𝑏!  𝑧!! + 𝑏!  𝑧!! 
where b0, b1, b2 and b3 are the filter coefficients. 

(a) Give a formula in discrete time for the impulse response h[n]. 
Plot h[n]. 3 points. [See Lecture slide 5-9; Homework 1.1 & 2.1] 

𝒉 𝒏 = 𝒃𝟎  𝜹[𝒏]+   𝒃𝟏  𝜹[𝒏− 𝟏]+ 𝒃𝟐  𝜹[𝒏− 𝟐]+ 𝒃𝟑  𝜹[𝒏− 𝟑] 
 

(b) Is the filter a finite impulse response (FIR) or infinite impulse response (IIR) filter? Why? 3 points. 

FIR filter.  There are no poles in the transfer function other than artificial poles at the 
origin.  Also, from the answer to part (c) below, the output only depends on current and 
previous input values— there is no feedback.              [See Lectures 5&6; Homeworks 1,2&3; Lab 3] 

(c) Give a formula in discrete time for the output y[n] in terms of the input x[n] including the initial 
conditions. 3 points.                                   [See Lecture slides 3-9, 5-4, 5-6 & 5-11; Homeworks 1&2; Lab 3] 

𝒚 𝒏 = 𝒃𝟎  𝒙[𝒏]+   𝒃𝟏𝒙[𝒏− 𝟏]+ 𝒃𝟐  𝒙[𝒏− 𝟐]+ 𝒃𝟑  𝒙[𝒏− 𝟑] 

Initial conditions must be zero to satisfy LTI properties:  𝒙 −𝟏 = 𝒙 −𝟐 =   𝒙 −𝟑 =   𝟎 
(d) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

[See Lecture slides 3-15 & 5-4] 
 

(e) Give a formula for the discrete-time frequency response of the filter.  3 points. 
[See Lecture slide 5-11, 5-12, 5-13, 5-14, 5-17 & 5-18; Homework 2.1] 
 

Substituting z = exp(j ω) into H(z) is valid because the region of convergence of H(z) is z ≠ 0 
which includes the unit circle. Another justification is that all FIR filters are BIBO stable. 
 

𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯 𝒆𝒋𝝎 = 𝒃𝟎 +   𝒃𝟏  𝒆!𝒋𝝎 + 𝒃𝟐  𝒆!𝟐𝒋𝝎 + 𝒃𝟑  𝒆!𝟑𝒋𝝎 
 

(f) Give all possible conditions on the coefficients for the filter to have constant group delay. 6 points. 
[See Lecture slides 5-15, 5-17 & 5-18; Homework 1.3, 2.1, 2.3 & 3.2] 
 

1. Filter coefficients are even symmetric w/r to their midpoint, i.e. 𝒃𝟎 = 𝒃𝟑  𝐚𝐧𝐝  𝒃𝟏 = 𝒃𝟐 
2. Filter coefficients are odd symmetric w/r to their midpoint, i.e. 𝒃𝟎 = −𝒃𝟑  𝐚𝐧𝐝  𝒃𝟏 = −𝒃𝟐 

 

(g) Using only values of +1 and -1, give values for the filter coefficients for a lowpass magnitude 
response.  4 points                                  [See Lecture slides 3-8, 3-14, 5-15, 5-17 & 5-18; Homework 2.1(a)] 
 

1. Filter coefficients are all +1.  Gives an averaging filter scaled by 4.  Lowpass.  –OR– 
2. Filter coefficients are all -1.  Gives an averaging filter scaled by -4.  Lowpass. 



Problem 1.2 Sampling.  24 points. 
Consider a two-sided continuous-time cosine signal with frequency f0 in Hz given by 

𝑥 𝑡 = cos(2𝜋𝑓!𝑡) 

(a) Plot the continuous-time Fourier transform of x(t). 6 points.  𝑿 𝒇 = 𝟏
𝟐
𝜹 𝒇+ 𝒇𝟎 +   𝟏

𝟐
𝜹 𝒇− 𝒇𝟎  

 
(b) Plot the continuous-time Fourier transform of the result of sampling x(t) at a sampling rate of fs 

assuming that the Sampling Theorem has been satisfied, i.e. fs > 2 f0. 6 points. 
 

𝑿𝒔𝒂𝒎𝒑𝒍𝒆𝒅 𝒇 = 𝒇𝒔  (  …+ 𝑿 𝒇+ 𝒇𝒔 + 𝑿 𝒇 + 𝑿 𝒇− 𝒇𝒔 +⋯ ) 

 
(c) Plot the continuous-time Fourier transform of x(t) sampled at a sampling rate of fs assuming that 

f0 < fs < 2 f0, which would not satisfy the Sampling Theorem. 6 points.  Let fs = 1.5f0 below. 

 
(d) In part (c), give a formula for the continuous-time frequency that would result after trying to 

reconstruct x(t) from its sampled version. 6 points. 
 

Sampling theorem says fs > 2 fmax or equivalently fmax < ½ fs.  Apparent frequency is fs – f0. 
 

Alternate response: Reconstruction applies a lowpass filter that passes frequencies from -½ 
fs to ½ fs which means that the frequency that would result is fs – f0.  
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[See Homework 0.2] 
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Problem 1.3 Filter Design.  27 points. 
People suffering from tinnitus, or ringing of the ears, hear a tone in their ears even when the 
environment is quiet.  The tone is generally at a fixed frequency in Hz, denoted as fc. 
Filtering music to remove as much as possible an octave of frequencies from f1 to f2 that contains fc as 
its center frequency can provide relief of tinnitus symptoms. 
 

This problem will ask you to design a sixth-order discrete-time infinite impulse response (IIR) filter to 
remove the octave of frequencies.  The sampling rate is fs where fs > 4 f2. 
[See Lecture 6 in-class discussion on tinnitus; Homework 1.2(c) solution for discussion of octaves] 

(a) Give formulas for f1 and f2 in terms of fc given that fc = ½ (f1+ f2). 6 points. 
 

To cover an octave of frequencies, f2 = 2 f1. 
Coupled with fc = ½ (f1+ f2), we have f1 = (2/3) fc and f2 = (4/3) fc 
 

(b) Give formulas for discrete-time frequencies ω1, ωc and ω2 that correspond to continuous-time 
frequencies f1, fc and f2, respectively.  3 points.                             [See Lecture slide 1-10; Homework 0.4] 

𝝎𝟏 = 𝟐𝝅
𝒇𝟏
𝒇𝒔
  𝐚𝐧𝐝  𝝎𝒄 = 𝟐𝝅

𝒇𝒄
𝒇𝒔
  𝐚𝐧𝐝  𝝎𝟐 = 𝟐𝝅

𝒇𝟐
𝒇𝒔

 

(c) Give formulas in terms of ω1, ωc and ω2 for the pole and zero locations for the sixth-order discrete-
time IIR filter.  Assume that the gain is one.  12 points.              [See Lecture 6-6, 6-7 & 6-8 slides; Lab 3] 
 

A sixth-order discrete-time IIR filter has six poles and six zeros.  Here, the gain C is 1. 
Zeros have to be real-valued or occur in conjugate symmetric pairs.  Same with the poles. 
 

Filter should attenuate frequencies between ω1 and ω2 as well as between -ω2 and -ω1. 
Bandstop filter.  Zeros on or near the unit circle indicate the stopband. 
Poles inside and near the unit circle indicate the passband(s). 
 

Zeros would be at frequencies ω1, ωc and ω2 as well as their negative values. 
Because fs > 4 f2 , ω2 will be between 0 and π/2 . 
 

𝐙𝐞𝐫𝐨𝐬: 𝒆𝒋𝝎𝟐 , 𝒆𝒋𝝎𝒄 , 𝒆𝒋𝝎𝟏 , 𝒆!𝒋𝝎𝟏 , 𝒆!𝒋𝝎𝒄 , 𝒆!𝒋𝝎𝟐 

𝐏𝐨𝐥𝐞𝐬: 𝒓𝒆𝒋
𝟏
𝟐 𝝎𝟏 , 𝒓, 𝒓𝒆!𝒋

𝟏
𝟐 𝝎𝟏 , 𝒓𝒆!𝒋

𝟒
𝟑 𝝎𝟐 ,−𝒓  𝐚𝐧𝐝  𝒓𝒆𝒋

𝟒
𝟑 𝝎𝟐   𝐰𝐡𝐞𝐫𝐞  𝒓 = 𝟎.𝟗 

 

(d) Draw the pole-zero diagram.  6 points.  Example plotted for fc = 6000 Hz and fs = 44100 Hz. 

  

[Lecture 5-13, 5-14, 6-6, 6-7, 6-19, 6-20 & 6-21 slides; Lecture 6 demos; Homework 3.1&3.3; Lab 3] 



Problem 1.4.  Potpourri.  21 points. 
(a) Oversampling generally gives a higher signal quality but at a higher implementation complexity.  

If we increase the sampling rate by a factor of K, analyze the increase in implementation 
complexity for finite impulse response (FIR) filtering in terms of 
 

1. Multiplication operations per second. 3 points.     [See Lecture slide 5-4; Reader Handout N; Lab 3] 
 

FIR filter of N coefficients requires N multiplication operations to compute one output 
sample given a new input sample. Filter runs at the sampling rate fs and hence 
computes N fs multiplications/s. If the sampling rate is increased by a factor of K, then 
the multiplication operations will increase by a factor of K.  
 

2. Memory reads per second. 3 points.           [See Lecture slides 5-4 & 5-24; Reader Handout N; Lab 3] 
 

FIR filter must read N coefficients and N current/previous input values in computing 
one output sample. Filter runs at the sampling rate fs and hence reads 2 N fs words/s.  If 
the sampling rate is increased by a factor of K, then the memory reads per second will 
increase by a factor of K.  
 

(b) In lab #2, you implemented a cosine generator on the digital signal processing board in lab using a 
lookup table to store one period of values for           [See Lecture slides 1-10 to 1-16; Homework 0.4; Lab 2] 
 

𝑥[𝑛] = cos(𝜔!𝑛) 
 

1. Assuming the sampling theorem has been satisfied, i.e. fs > 2 f0, give the range of values that 
ω0 can take. Please be sure to include negative, zero and positive frequencies.  3 points. 
𝝎𝟎 = 𝟐𝝅 𝒇𝟎

𝒇𝒔
  𝐚𝐧𝐝  𝒇𝟎 <

𝟏
𝟐
  𝒇𝒔 which means that  −𝝅 < 𝝎𝟎 < 𝝅 

Note: The discrete-time frequency domain is periodic with period 2 π . 
 

2. What is the discrete-time period in samples for x[n]? 3 points. 
𝝎𝟎 = 𝟐𝝅 𝒇𝟎

𝒇𝒔
= 𝟐𝝅 𝑵

𝑳
 where N and L are integers with common factors removed. 

Discrete-time periodicity is L.  See Discrete Time Periodicity handout from Lecture 1. 
 

3. Describe a way to use a smaller lookup table to save memory.  3 points. 
 

If the discrete-time period L is even, the cosine could be computed over half of the 
period and the half can be determined through symmetry. 
 

If the discrete-time period L is a multiple of four, cosine could be computed over one-
fourth of the period and the rest of the samples can be determined through symmetry. 
 

If the discrete-time period L is a multiple of eight, cosine could be computed over one-
eighth of the period and the rest of the samples can be determined through symmetry. 
 

(c) If discrete-time signal cos(ω0 n) is input to a squaring block, what discrete-time frequencies will 
appear on the output?  6 points.                                            [See Lecture slides 3-7 & 3-8; Homework 1.3] 
 

Output will have a component of 0 frequency (DC) and a component at a frequency of 2 ω0: 

𝒄𝒐𝒔𝟐 𝝎𝟎𝒏 =
𝟏
𝟐+

𝟏
𝟐 𝒄𝒐𝒔 𝟐𝝎𝟎𝒏  

If 2 ω0 > π , then the component at 2 ω0 will alias. Consider cos(πn) = (-1)n. Output of the 
squaring block is 1, which has discrete-time frequency components of 0, 2π , etc. 


