The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm #1

Date: October 20, 2017	Course: EE 445S Evans	

Name:			
	Last,	First	

- The exam is scheduled to last 50 minutes.
- Open books and open notes. You may refer to your homework assignments and the homework solution sets.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network. *Please disable all wireless connections on your computer system(s).*
- Please turn off all cell phones.
- No headphones allowed.
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- <u>Fully justify your answers</u>. If you decide to quote text from a source, please give the quote, page number and source citation.

Problem	Point Value	Your score	Торіс	
1	28		Filter Analysis	
2	24	Mixers		
3	24	Filter Design		
4	24		Potpourri	
Total	100			

Problem 1.1 Filter Analysis. 28 points.

Consider the following causal finite impulse response (FIR) linear time-invariant (LTI) filter with input x[n] and output y[n] described by

$$y[n] = x[n] - a x[n-1]$$

- (a) Give a formula for the impulse response h[n]. Plot h[n]. 3 points.
- (b) What are the initial conditions? What are their values? 3 points.
- (c) Draw the block diagram of the FIR filter relating input x[n] and output y[n]. 6 points.

- (d) Give a formula for the discrete-time frequency response of the FIR filter. 4 points.
- (e) Does the FIR filter have linear phase? If yes, then give the conditions on the coefficient *a* for the filter to have linear phase. If no, then show that the coefficients cannot meet the conditions for linear phase. 6 *points*

(f) If parameter *a* were real-valued, what are all of the possible frequency selectivities that the FIR filter could provide: lowpass, highpass, bandpass, bandstop, allpass, notch? *6 points*

Problem 1.2 Mixers. 24 points.

Mixing provides an efficient implementation in analog continuous-time circuits for sinusoidal amplitude modulation of the form

$$s(t) = m(t) \cos(2 \pi f_c t)$$

where m(t) is the baseband message signal with bandwidth W, and f_c is the carrier frequency such that $f_c > W$

- (a) Give the passband and stopband frequencies for the lowpass filter. 3 points.
- (b) Give the passband and stopband frequencies for the bandpass filter. 3 points
- (c) Draw the spectrum for m(t), x(t), and s(t). You do not need to draw the spectrum for v(t). 9 points.

- (d) In order to simulate the mixer in discrete-time, e.g. in MATLAB, we use discrete-time filters for the lowpass and highpass filters and replace the sampling block with an upsampling block.
 - i. Give the constraints on the sampling rate to convert the mixer to discrete time. 6 points.
 - ii. Determine the upsampling factor. *3 points*.

Problem 1.3 Filter Design. 24 points.

Some audio systems split an audio signal in three frequency bands for playback over sub-wolfer, wolfer, and tweeter speaker elements.

The block diagram on the right performs the split in discrete time:

 $x_I[n]$ contains sub-wolfer frequencies 20-200 Hz.

 $x_2[n]$ contains wolfer frequencies 200-2,000 Hz.

 $x_3[n]$ contains tweeter frequencies 2,000-20,000 Hz.

Assume that the sampling rate is 48000 Hz.

Each bandpass filter should have group delay of less than 10 ms.

- (a) Give passband ripple and stopband attenuation values for these filters. 6 points.
- (b) Give passband and stopband discrete-time frequencies to design the bandpass filter $h_2[n]$. 6 points.

(c) Draw the pole-zero diagram for a fourth-order infinite impulse response (IIR) bandpass filter $h_2[n]$. 6 points.

(d) For a linear phase finite impulse response (FIR) filter, indicate the maximum length that would still meet the group delay constraint. The maximum length would apply to all three filters. 6 points.

Problem 1.4. Potpourri. 24 points.

(a) Consider a linear time-invariant (LTI) system that has bounded-input bounded-output stability. To measure its frequency response, one could input a discrete-time unit impulse $\delta[n]$ for $-\infty < n < \infty$, find the output signal h[n], and take the discrete-time Fourier transform of h[n]. In practice, we cannot go back to $n = -\infty$ or wait until $n = \infty$. Give a practical method using a finite-length discrete-time input signal to estimate the frequency response of the LTI system. 12 points.

.

(b) Consider the following method to compute a cosine value by using a Taylor series at $\theta = 0$:

$$\cos(\theta) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} \theta^{2n} = 1 - \frac{1}{2} \theta^2 + \frac{1}{24} \theta^4 - \dots$$

Suppose that 10 non-zero terms were kept in the series expansion (i.e. n = 0, 1, 2, ... 9).

- i. How would you minimize the number of multiplications? 6 points.
- ii. Please complete the last row of entries for the new method. 6 points.

Method	Multiplication- Add Operations	ROM (words)	RAM (words)	Quality in floating point
C math library call	30	22	1	Second best
Difference equation	2	2	3	Worst
Lookup table	0	L	0	Best
Taylor series				

L is the smallest discrete-time period for the cosine signal.