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• The exam is scheduled to last 50 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network.  

Please disable all wireless connections on your computer system(s). 
• Please turn off all cell phones. 
• No headphones allowed. 
• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 
• Fully justify your answers.  If you decide to quote text from a source, please give the 

quote, page number and source citation. 
 
 
 
 

 Problem Point Value Your score Topic 
Liv 1 28  Filter Analysis 

Maddie 2 27  Minimum Phase FIR Filters 
Liv 3 24  Bluetooth Receiver 

Maddie 4 21  Potpourri 
 Total 100   

 
 



Problem 1.1 Filter Analysis.  28 points. 
Consider the following causal linear time-invariant (LTI) discrete-time filter 
with input x[n] and output y[n] described by 

 y[n] = x[n] + a x[n-2] + a2 x[n-4] 

for n ≥ 0, where a is a real-valued coefficient where 0 < a < 1. 
(a) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter?  Why?  3 points. 

FIR filter.   Any of the following reasons would provide sufficient justification: 
1. The impulse response extends for 5 samples from n = 0 to n = 4, which is finite in duration. 
2. The output y[n] does not depend on previous output values; i.e., there is no feedback. 
3. In the transfer function in the z-domain in part (d), the only poles are trivial pole at z = 0. 

(b) What are the initial conditions and their values?  Why?  6 points. 
Let n=0:  y[0] = x[0] + a x[-2] + a2 x[-4].  x[0] is first input value and not an initial condition. 
Let n=1:  y[1] = x[1] + a x[-1] + a2 x[-3]. 
Let n=2:  y[2] = x[2] + a x[0] + a2 x[-2].  The initial conditions are x[-1], x[-2], x[-3], and x[-4]. 
The initial conditions have to be zero for linearity and time-invariant properties to hold. 
Note: A causal system does not depend on future input values or future output values. 

(c) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

 
(d) Derive a formula for the transfer function in the z-domain.  4 points. 

Z-transform both sides of difference equation, knowing that all initial conditions are zero: 
Y(z) = X(z) + a z -2 X(z) + a2 z -4 X(z) which means 𝑯 𝒛 = 𝒀(𝒛)

𝑿(𝒛)
= 𝟏+ 𝒂 𝒛!𝟐 + 𝒂𝟐 𝒛!𝟒 for 𝒛 ≠ 𝟎 

(e) Give a formula for the discrete-time frequency response of the filter.  3 points. 
We can convert the transfer function H(z) into the discrete-time frequency domain by 
substituting z = exp(j ω) because FIR LTI systems are always Bounded-Input Bounded-
Output stable, or equivalently, because the region of convergence includes the unit circle: 

𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯(𝒛) 𝒛!𝒆𝒋𝝎 = 𝟏+ 𝒂 𝒆!𝟐𝒋𝝎 + 𝒂𝟐 𝒆!𝟒𝒋𝝎 

(f) Does the filter have linear phase over all frequencies?  Why or why not?  6 points. 
An FIR has linear phase if its impulse response is even or odd symmetric about its midpoint. 

The impulse response has values 1, 0, a, 0, a2. Because 0 < a < 1, neither odd symmetry nor even 
symmetry about the midpoint (n = 2) is possible.
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Problem 1.2 Minimum Phase FIR Filters.  27 points.  
Minimum phase finite impulse response (FIR) filters have 
shorter length and lower group delay compared with linear phase FIR 
filters that meet the same magnitude specification. 

We will use an algorithm by Herrman and Schüssler to convert an odd-
length linear phase FIR filter to a minimum phase FIR filter. 

Consider a linear phase FIR filter has the causal three-point impulse response h[n] given above. Filter 
order M is 2. The filter is lowpass with stopband attenuation Αstop = 0.2 in linear units (–13.9794 dB). 

(a) What is the group delay in samples through the linear phase FIR filter h[n]?  3 points. 
Group delay is defined as − 𝒅

𝒅𝝎
∡𝑯𝒇𝒓𝒆𝒒(𝝎) where 𝑯𝒇𝒓𝒆𝒒(𝝎) is the frequency response. 

For an N-point FIR filter with even or odd symmetry about the midpoint of its impulse 
response, the group delay is a constant value of  𝑵!𝟏

𝟐
= 𝑴

𝟐
= 𝟏 sample. 

This corresponds to the index of the midpoint in the impulse response.  

(b) Please implement the steps in the Herrman and Schüssler algorithm below.  
i. Compute the impulse response for a linear phase FIR filter g[n] = Αstop δ[n – (M/2)] + h[n] 

where Αstop is in linear units.  Plot g[n].  6 points. 
𝒈 𝒏 = 𝟎.𝟐 𝜹 𝒏− 𝟏 + 𝒉 𝒏 =  𝜹 𝒏 + 𝟐 𝜹 𝒏− 𝟏 + 𝜹 𝒏− 𝟐  

 

ii. Compute G(z).  6 points. 

𝑮 𝒛 = 𝟏+ 𝟐 𝒛!𝟏 + 𝒛!𝟐 

𝑮 𝒛 = 𝟏+ 𝒛!𝟏 𝟐 which has a double zero at z = -1. 

 
iii. Form the minimum phase FIR filter V(z) by keeping any zeros of G(z) inside the unit circle 

and keeping one zero in each pair of repeated zeros on the unit circle in G(z). 6 points. 

𝑽 𝒛 = 𝑪 𝟏+ 𝒛!𝟏  where C is the gain. 

 

iv. Compute the gain for V(z) so that its response at ω = 0 is the same as the response of H(z) 
at ω = 0.  6 points. 

In the z-domain, discrete-time frequency ω  is 𝒛 =  𝒆 𝒋 𝝎 . 

When ω  = 0, 𝒛 =  𝒆 𝒋 𝟎 = 𝟏.  
V(1) = 2C and H(1) = 3.8. 

This gives 2C = 3.8 or C = 1.9. 
 

Note: The Herrman-Schüssler algorithm is based on observing the structure of zeros in a linear 
phase finite impulse response (FIR) filter.  Here are the pole-zero and frequency response plots for 
a 50th-order linear phase FIR filter h[n] using fdatool in MATLAB with default design parameters: 
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Filter design parameters are fpass = 9600 Hz, Apass = 1 dB, fstop = 12000 Hz, Astop = 80 dB, and 
fs = 48000 Hz.  In linear units, Astop is 10 -4.  The filter order is M = 50. 

In zooming into the stopband of the freqz plot on the left and using the data cursor tool in 
MATLAB, the actual Astop is -78.8 dB, which is 1.1482 x 10 -4 in linear units. 

In the pole-zero plot, the zero locations in the passband frequencies occur in reciprocal pairs at the 
same angle; i.e., the radius of one zero is the reciprocal of the radius of the other.  The zeros for 
stopband frequencies are on the unit circle. 
If we were to augment h[n] using the Herrman-Schüssler algorithm, we would add enough offset to 
all frequencies to lift the stopband amplitude function (not magnitude function) to be non-negative: 
g[n] = Α stop δ[n – 25] + h[n]. Phase response (below) becomes a line without any discontinuities. 
The freqz and zplane plots for g[n] are given below. Its Astop is -72.9 dB, as highlighted. Zeros over 
stopband frequencies are in reciprocal pairs— they are so close in value that they appear in the 
same location in the zplane plot.  The zplane plot for one of reciprocal pairs of zeros is enlarged. 

 
To form V(z), we would keep the zeros inside the unit circle and normalize. 



  
Problem 1.3 Bluetooth Receiver.  24 points. 

Bluetooth operates in the 2400-2499 MHz unlicensed band. 
At any given time, Bluetooth will transmit on one of 79 channels, and each channel is 1 MHz wide. 

Channel k begins at (2402 + k) MHz where k = 0, 1, …, 78. 
The Bluetooth receiver below has an analog/RF front end and a digital baseband receiver. 

(a) Analog/RF front end block diagram is given below, where r(t) is the received RF signal. In the 
plot for R(f), one of the 1 MHz channels is shaded, and its counterpart in negative frequencies is 
also shaded.  The spectrum of the analog/RF front end output signal, y(t), is also shown.  6 points. 

 
 

 

 
What is the carrier frequency fc? 
fc = f1. Analog/RF front end performs sinusoidal amplitude demodulation to shift the positive 
frequency band in R(f) to the left by f1 and negative frequency band in R(f) to the right by f1. 
Note: This type of fixed analog/RF front end design would enable digital baseband processing to 
be programmed in software. The baseband performs the final demodulation stage for channel k. 
Bluetooth transmitters/receivers perform ~1600 hops/s in a pre-defined pattern in an attempt to 
avoid interference, and will stop using a channel that has strong noise/interference on it.  

(b) Design a second-order discrete-time linear time-invariant (LTI) infinite impulse response (IIR) 
filter to extract channel k from y[n] where y(t) is sampled at a sampling rate of fs to obtain y[n] 
where fs ≥ 200 MHz.  Give formulas for, and plot, the poles and zeros.  18 points. 

Due to the analog/RF front end in part (a), channel k in y(t) resides between (k+2) MHz and 
(k+3) MHz.  The center frequency is at (k+2.5) MHz.  Let fs = 200 MHz. 

To extract channel k, i.e. to receive channel k, we have been asked to use a second-order 
bandpass IIR filter. The center frequency would be 𝝎𝒌 = 𝟐𝝅 𝒌!𝟐.𝟓  𝐌𝐇𝐳

𝟐𝟎𝟎 𝐌𝐇𝐳
= 𝟐𝝅 𝒌!𝟐.𝟓 

𝟐𝟎𝟎 
 . 

A second-order filter has two poles and any number of zeros.  A biquad 
would have two poles and two zeros. 

Poles are at 𝒑𝟎 = 𝟎.𝟗 𝒆𝒋𝝎𝒌 and 𝒑𝟏 = 𝟎.𝟗 𝒆!𝒋𝝎𝒌 
For small values of k, poles are close to 0 rad/sample.  To avoid 
strong interaction between zeros and poles, place two zeros at z = -1. 
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Problem 1.4.  Potpourri.  21 points.  
(a) Compare the implementation complexity of an infinite impulse response (IIR) filter with N poles 

and N zeros for the different filter structures below.  A biquad is a second-order IIR filter. 
i. Complete the table below while providing justification for each entry.  Your answers would 

be in terms of N.  12 points. 

Filter 
Structure 

Number of 
coefficients 

Number of input and 
output values to store 

Multiplications 
per output sample 

Additions per 
output sample 

Direct Form 2N+1 2N+2 2N+1 2N 

Cascade of 
Biquads 
(N even) 

𝟓
𝑵
𝟐 = 𝟐.𝟓𝑵 𝟔

𝑵
𝟐 = 𝟑𝑵 𝟓

𝑵
𝟐 = 𝟐.𝟓𝑵 𝟒

𝑵
𝟐 = 𝟐𝑵 

Cascade of 
Biquads 
(N odd) 

𝟓
𝑵− 𝟏
𝟐 + 𝟑 𝟔

𝑵− 𝟏
𝟐 + 𝟒 𝟓

𝑵− 𝟏
𝟐 + 𝟑 𝟒

𝑵− 𝟏
𝟐 + 𝟐 

Direct form calculation of the current output sample y[n] would use the following: 
𝒚 𝒏 = 𝒂𝒎 𝒚 𝒏−𝒎 + 𝒃𝒌 𝒙[𝒏− 𝒌]𝑵

𝒌!𝟎
𝑵
𝒎!𝟏 . 

Direct form with two tapped delay lines stores 2N+2 values, i.e. N+1 current/previous 
inputs and N+1 current/previous outputs (see lecture slide 6-9).  Direct form with one 
tapped delay line stores N+1 intermediate values (see lecture slide 6-11). 

Biquad i: 𝒚𝒊 𝒏 = 𝒂𝟏 𝒚𝒊 𝒏− 𝟏 + 𝒂𝟐 𝒚𝒊 𝒏− 𝟐 + 𝒃𝟎 𝒙𝒊 𝒏 + 𝒃𝟏 𝒙𝒊 𝒏− 𝟏 + 𝒃𝟐 𝒙𝒊 𝒏− 𝟐 , 
which takes 5 multiplications and 4 additions.  We would need to store the current input 
and two previous inputs, and the current output and two previous outputs. 
When N is even, there are N/2 biquads in cascade. 

When N is odd, there are (N-1)/2 biquads and a first-order IIR filter in cascade.  A first-
order IIR filter output is 𝒚𝒊 𝒏 = 𝒂𝟏 𝒚𝒊 𝒏− 𝟏 + 𝒃𝟎 𝒙𝒊 𝒏 + 𝒃𝟏 𝒙𝒊 𝒏− 𝟏 . 

ii. What is the percentage increase in implementation complexity for the cascade of biquads 
vs. direct form when N = 10? 3 points. 

Direct Form: 21 coefficients, 22 values to store, 21 multiplications, 20 additions 
Cascade:  25 coefficients, 30 values to store, 25 multiplications, 20 additions. 
19% more coefficients/multiplications.  36% more values to store.  Same in additions. 

(b) For infinite impulse response (IIR) filter orders greater than two, what is the primary advantage of 
using a cascade of biquads vs. a direct form filter structure?  6 points. 
Using a cascade of biquads helps to ensure that a bounded-input bounded-output (BIBO) IIR 
filter remains BIBO stable after implementation. Classical IIR filter designs compute the 
pole and zero locations for a BIBO stable filter using closed-form formulas with high 
accuracy.  When converting the factored form of the transfer function to unfactored form for 
direct form implementation, quantization error from the addition and multiplication 
operators can cause lead to error in the feedback and feedforward coefficient values. 
Refactoring the perturbed feedback coefficient values can yield poles on or outside of the unit 
circle, which means that the implementation is BIBO unstable. 

HW 0.4 3.1 3.3 Labs 2 & 3 Lectures 1 5 & 6 
In-class discussion for lecture slide 6-23  


