
 

The University of Texas at Austin 

Dept. of Electrical and Computer Engineering 

Midterm #1 Solutions 7.0 

 

Date: October 16, 2019     Course: EE 445S Evans 

 

 

 

 

Name:           Zappa,          Frank    

Last,      First   

 

 

 

 

 

 The exam is scheduled to last 75 minutes. 

 Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 

 Calculators are allowed. 

 You may use any standalone computer system, i.e. one that is not connected to a network.  

Please disable all wireless connections on your computer system(s). 

 Please turn off all cell phones. 

 No headphones allowed. 

 All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 

 Fully justify your answers.  If you decide to quote text from a source, please give the 

quote, page number and source citation. 

 

 

 

 

 Problem Point Value Your score Topic 

Ahmet 1 28  Filter Analysis 

Dweezil 2 24  Pre-Distortion Filter Design 

Moon 3 24  Acoustic Noise Reduction 

Diva 4 24  Potpourri 

 Total 100   

 

 



Problem 1.1 Filter Analysis.  28 points. 

Consider the following causal linear time-invariant (LTI) discrete-time filter 

with input x[n] and output y[n] described by 

 y[n] = x[n] – x[n-2] 

for n  0. 

(a) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter?  Why?  3 points. 

FIR filter.  Any of the following reasons would provide sufficient justification: 

1. The impulse response extends for 3 samples from n = 0 to n = 2, which is finite in duration. 

2. The output y[n] does not depend on previous output values; i.e., there is no feedback. 

3. In the transfer function in the z-domain in part (d), the only poles are trivial poles at z = 0. 

(b) What are the initial conditions and their values?  Why?  6 points. 

Let n=0:  y[0] = x[0] – x[-2] 

Let n=1:  y[1] = x[1] – x[-1] 

Let n=2:  y[2] = x[2] – x[0]  etc. 

Initial conditions are x[-1] and x[-2] and must be zero for linearity and time-invariant 

properties to hold.  Note that x[0] is the first input value and not an initial condition. 

(c) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

 
(d) Derive a formula for the transfer function in the z-domain and the region of convergence.  4 points. 

Z-transform both sides of difference equation, knowing that all initial conditions are zero: 

 Y(z) = X(z) – z -2 X(z) which means that 𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
= 𝟏 − 𝒛−𝟐  for 𝒛 ≠ 𝟎 

(e) Give a formula for the discrete-time frequency response of the filter.  3 points. 

We can convert the transfer function H(z) into the discrete-time frequency domain by 

substituting z = exp(j ) because FIR LTI systems are always Bounded-Input Bounded-

Output stable, or equivalently, because the region of convergence includes the unit circle: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒛)]𝒛=𝒆𝒋𝝎 = 𝟏 − 𝒆−𝟐𝒋𝝎 

(f) Give a formula for the phase response vs. discrete-time frequency and the group delay vs. discrete-

time frequency. Does the filter have linear phase over all frequencies?  Why or why not?  6 points. 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝟏 − 𝒆−𝟐𝒋𝝎 = 𝒆−𝒋𝝎( 𝒆𝒋𝝎 − 𝒆−𝒋𝝎) = 𝟐 𝐬𝐢𝐧(𝝎) 𝒋 𝒆−𝒋𝝎 = 𝟐 𝐬𝐢𝐧(𝝎) 𝒆
𝒋(−𝝎+

𝝅
𝟐)

 

∠𝑯𝒇𝒓𝒆𝒒(𝝎) = −𝝎 +
𝝅

𝟐
  except for phase jumps (discontinuities) of  at frequencies that are 

zeroed out, which is generalized linear phase.  𝑮𝑫(𝝎) = −
𝒅

𝒅𝝎
∠𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝟏 𝐬𝐚𝐦𝐩𝐥𝐞.    

HW 0.4, 1.1 2.1 2.2. 2.3 & 3.2 
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Note: The two initial conditions are visible here as the 

initial condition for each of the two unit delay blocks. 
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Note:  Arrows are important because 

they indicate the order of calculations. 

Note: A causal system does not 

depend on future input values, or 

current/future output values. 

 



The following expands on the solution for problem 1.1(f). 

 

Additional explanation concerning phase discontinuities 

We take the expression for the frequency response in amplitude and phase form 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝟐 𝐬𝐢𝐧(𝝎) 𝒆
𝒋(−𝝎+

𝝅
𝟐)

 

and convert it into magnitude and phase response.  The amplitude form 𝟐 𝐬𝐢𝐧(𝝎) is non-

positive for 𝝎 ∈ (−𝝅, 𝟎] and non-negative for 𝝎 ∈ (𝟎, 𝝅]: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = [
(−𝟐 𝐬𝐢𝐧(𝝎)) (−𝒆

𝒋(−𝝎+
𝝅
𝟐)

) 𝝎 ∈ (−𝝅, 𝟎]

𝟐 𝐬𝐢𝐧(𝝎) 𝒆
𝒋(−𝝎+

𝝅
𝟐)

𝝎 ∈ (𝟎, 𝝅]

 

In the phase form, we can replace – 𝟏 = 𝒆−𝒋𝝅 to give 

𝑯𝒇𝒓𝒆𝒒(𝝎) = [
(−𝟐 𝐬𝐢𝐧(𝝎))𝒆

𝒋(−𝝎−
𝝅
𝟐)

𝝎 ∈ (−𝝅, 𝟎]

𝟐 𝐬𝐢𝐧(𝝎) 𝒆
𝒋(−𝝎+

𝝅
𝟐)

𝝎 ∈ (𝟎, 𝝅]
 

Discrete-time frequency responses are periodic in  with period 2.  Hence, there is a 

discontinuity in the phase response at integer multiples of . 

 

MATLAB code to plot magnitude and phase responses 

We can see the discontinuity in the phase response that occurs at integer multiples of  

rad/sample by plotting the phase response from [0, 2] rad/sample: 

 

freqz( [1 0 -1], 1000, 'whole' )  

  



Problem 1.2 Predistortion Filter Design.  24 points.  

A predistorter is used to compensate for distortion introduced by a system: 

 

 

 

 

The predistorter applies distortion to x[n] that is the opposite of that particular distortion in the system, 

so that the distortion introduced by the predistorter cancels the distortion introduced by the system. 

In this problem, both the predistorter and the system are  

 Linear and time-invariant (LTI) 

 Bounded-input bounded-output (BIBO) stable 

Each predistorter will be a first-order infinite impulse response (IIR) filter. 

The goal in each part is to design a predistorter by placing its pole so that the cascade is all-pass. 

All-pass cascade would mean |𝑮𝒇𝒓𝒆𝒒(𝝎)𝑯𝒇𝒓𝒆𝒒(𝝎)| = 𝒈 where 𝒈 is a positive constant.  A pole-zero 

pair in an all-pass configuration would have same angles and reciprocal magnitudes, or would 

have the same value and cancel out.  Both filters are causal. 

(a) The system has a transfer function H(z) = 1 – 0.5 z-1.  8 points. 

i. Give the transfer function of the predistorter, G(z). 

ii. Plot the pole and zero for the product G(z) H(z) on the right. 

H(z) has a zero at z = 0.5.  A pole at z = 2 for G(z) would give a BIBO 

unstable system.  G(z) would have a pole at the same location z = 0.5. 

𝑮(𝒛) =  
𝟏

𝟏−𝟎.𝟓 𝒛−𝟏
 and 𝑮(𝒛)𝑯(𝒛) = 𝟏 which doesn’t have poles or zeros.  

(b) The system has a transfer function H(z) = 1 –  z-1.  8 points. 

i. Give the transfer function of the predistorter, G(z). 

ii. Plot the pole and zero for the product G(z) H(z) on the right. 

H(z) has a zero at z = 1.  A pole at z = 1 for G(z) would give a BIBO 

unstable system.  Place the pole at the same angle as the zero but at a 

radius of 0.9 to give a notch configuration. 

 𝑮(𝒛) =  
𝟏

𝟏−𝟎.𝟗 𝒛−𝟏
 and hence 𝑮(𝒛)𝑯(𝒛) =

𝟏−𝒛−𝟏

𝟏−𝟎.𝟗 𝒛−𝟏
 

 

(c) The system has a transfer function H(z) = 1 –  2 z-1. 8 points. 

i. Give the transfer function of the predistorter, G(z).   

ii. Plot the pole and zero for the product G(z) H(z) on the right. 

H(z) has a zero at z = 2.  G(z) would have a pole at z = 0.5.  

𝑮(𝒛) =  
𝟏

𝟏−𝟎.𝟓 𝒛−𝟏
 and hence 𝑮(𝒛)𝑯(𝒛) =

𝟏−𝟐 𝒛−𝟏

𝟏−𝟎.𝟓 𝒛−𝟏
 

 

 

 

Re(z) 

Im(z) 

Re(z) 

Im(z) 

X O 

Note:  If the predistorter were 

placed after the system, then it 

would be called an equalizer.  

See Lecture Slides 5-3 & 6-6. 
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Re(z) 

Im(z) 

X O 



 

MATLAB results for the solutions for problem 1.2. 

 

(b) We had seen a DC notch filter during lecture 6 at the five-second mark in the animation “IIR 

filter with one pole and one zero” that relates the time, z, and frequency domains (see demos) 

 

freqz( [1 -1], [1 -0.9] ) 

 
 

(c) This is an all-pass configuration as discussed on lecture slide 6-6. 

 

freqz( [1 -2], [1 -0.5] ) 

 

 
  

http://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html
http://dspfirst.gatech.edu/chapters/08feedbac/demos/3_domain/index.html


Problem 1.3 Acoustic Noise Reduction.  24 points.  

A car’s audio system allows connection with a phone for hands-free use.  

Inside the car, the primary sources of acoustic noise are from the engine and air conditioner. 

Design discrete-time infinite impulse response (IIR) filters to be applied in cascade to the output 

of the microphone in the car’s audio system to reduce acoustic noise when the phone is in use.  

Assume a sampling rate of 𝑓𝑠 = 8 kHz. 

(a) Filter #1. An air conditioner emits acoustic noise uniformly between 

0 Hz and 4000 Hz. Primary speech frequencies are from 80 Hz to 3000 

Hz. Give formulas for the two poles, two zeros, and gain of a discrete-

time second-order IIR filter to reduce the air conditioning noise and 

improve the signal-to-noise ratio of the speech signal, and plot the 

poles and zeros on the right.  9 points. 

Use bandpass filter w/ passbands 80 to 3000 Hz & -80 to -3000 Hz. 

Place pole at center of each passband and zeros at 0 & 4000 Hz. 

𝝎𝒄 = 𝟐𝝅
(𝟖𝟎𝐇𝐳+𝟑𝟎𝟎𝟎𝐇𝐳)/𝟐

𝟖𝟎𝟎𝟎 𝑯𝒛
= 𝟐𝝅

𝟕𝟕

𝟐𝟎𝟎
 and 𝒑𝟎 = 𝟎. 𝟖𝒆𝒋𝝎𝒄, 𝒑𝟏 = 𝟎. 𝟖𝒆−𝒋𝝎𝒄 , 𝒛𝟎 = 𝟏, and 𝒛𝟏 = −𝟏. 

Solve for gain C by setting H(z) = 1 at 𝒛 = 𝒆𝒋𝝎𝒄 where 𝑯(𝒛) = 𝑪
(𝟏−𝒛𝟎𝒛−𝟏)(𝟏−𝒛𝟏𝒛−𝟏)

(𝟏−𝒑𝟎𝒛−𝟏)(𝟏−𝒑𝟏𝒛−𝟏)
 

(b) Filter #2. The engine emits acoustic noise with two principal frequencies: the engine’s rotational 

speed and its third harmonic. The engine’s rotation speed in Hz, 𝑓Eng(𝑡), varies over time. 

i. The current rotational speed of the engine in revolutions per minute (RPM) is ΩRPM(𝑡).  Give 

formulas for 𝑓Eng(𝑡) and its third harmonic 3𝑓Eng(𝑡), in Hz, in terms of ΩRPM(𝑡).   3 points 

Since 𝟏 RPM = (𝟏/𝟔𝟎) Hz, we have:  𝒇Eng(𝒕) =
𝟏

𝟔𝟎
𝛀RPM(𝒕) and 𝟑𝒇Eng(𝒕) =

𝟏

𝟐𝟎
 𝛀RPM(𝒕) 

ii. What is the highest rotational speed (in RPM) of the engine before aliasing of the third 

harmonic 3𝑓Eng(𝑡) occurs?  3 points. 

Aliasing will occur when 𝟐𝒇max ≥ 𝒇𝒔 .  Third harmonic will not alias if 𝟔𝒇Eng(𝒕) ≥ 𝒇𝒔 : 
𝟏

𝟏𝟎
𝛀RPM(𝒕) ≥ 𝟖𝟎𝟎𝟎 Hz. Highest engine rotational speed before aliasing occurs is 80,000 RPM. 

iii. Design a fourth-order discrete-time IIR filter to remove both principal frequencies, 

𝑓Eng(𝑡) and 3𝑓Eng(𝑡), of the engine noise assuming ΩRPM(𝑡) = 2400 RPM. Please specify the 

four poles, four zeros, and gain, and plot the poles and zeros below.  9 points 

For notch at 𝒇Eng(𝒕), 𝝎𝟏 = 𝟐𝝅
𝒇Eng(𝒕)

𝒇𝒔
= 𝟐𝝅

𝟐𝟒𝟎𝟎𝐑𝐏𝐌

𝟖𝟎𝟎𝟎 Hz
×

𝟏 𝐇𝐳

𝟔𝟎𝐑𝐏𝐌
=

𝟏

𝟏𝟎𝟎
𝝅 

For notch at 𝟑𝒇Eng(𝒕), 𝝎𝟑 = 𝟑𝝎𝟏 =
𝟑

𝟏𝟎𝟎
𝝅 

Zeros at 𝒛𝟎 = 𝒆𝒋
𝝅

𝟏𝟎𝟎  , 𝒛𝟏 = 𝒆−𝒋
𝝅

𝟏𝟎𝟎  , 𝒛𝟐 = 𝒆𝒋
𝟑

𝟏𝟎𝟎
𝝅

 , and 𝒛𝟑 = 𝒆−𝒋
𝟑

𝟏𝟎𝟎
𝝅

. 

Poles at 𝒓𝒆𝒋
𝝅

𝟏𝟎𝟎  , 𝒓𝒆−𝒋
𝝅

𝟏𝟎𝟎  , 𝒓𝒆𝒋
𝟑

𝟏𝟎𝟎
𝝅

 , and 𝒓𝒆−𝒋
𝟑

𝟏𝟎𝟎
𝝅

 where 𝒓 = 𝟎. 𝟗. 

To solve for gain C, normalize H(z) at 𝒛 = 𝒆𝒋𝝅 = −𝟏 and H(-1) = 1 

where 

𝑯(𝒛) = 𝑪
(𝟏 − 𝒛𝟎𝒛−𝟏)(𝟏 − 𝒛𝟏𝒛−𝟏)(𝟏 − 𝒛𝟐𝒛−𝟏)(𝟏 − 𝒛𝟑𝒛−𝟏)

(𝟏 − 𝒑𝟎𝒛−𝟏)(𝟏 − 𝒑𝟏𝒛−𝟏)(𝟏 − 𝒑𝟐𝒛−𝟏)(𝟏 − 𝒑𝟑𝒛−𝟏)
 

HW 1.1, 2.1, 3.1 & 3.3 
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Problem 1.3.  Alternate student solution for part (a). 

We can use a double notch with real-valued poles and zeros if they 

are designed carefully. 

𝒑𝟎 = 𝟎. 𝟗, 𝒑𝟏 = −𝟎. 𝟗, 𝒛𝟎 = 𝟏, and 𝒛𝟏 = −𝟏 

Find C by normalizing H(z) at 𝒛 = 𝒆𝒋𝝅/𝟐 = 𝒋 which gives C = 0.905. 

freqz( 0.905*[1 0 -1], [1 0 -0.81] ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Passband is from 400 to 3600 Hz.  We can move the pole at z = 0.9 closer to the unit circle to 

narrow the stopband at 0 rad/sample, and move the pole at z = -0.9 further away from the unit 

circle to widen the stopband at  rad/sample. The following has a passband from 80 to 2920 Hz: 

z0 = 1; z1 = -1; 

numer = [1 -(z0+z1) z0*z1]; 

p0 = 0.98; p1 = -0.78; 

denom = [1 -(p0+p1) p0*p1]; 

z = j; 

C = abs(denom * [1 z^(-1) z^(-2)]') / (numer * [1 z^(-1) z^(-2)]'); 

freqz(C*numer, denom); 

 
Note:  Having real-valued poles has a distinct advantage in implementation because the quality 

factor for each real-valued pole is at the minimum value of 0.5.  The time response due to a real-

valued pole does not have an oscillating component and only has exponential decay.  See Lab #3 

Part 3 and Lecture Slides 6-16 and 6-17. 

Re(z) 

Im(z) 

X X O O 



Problem 1.4.  Potpourri.  24 points.  

(a) Let 𝑥(𝑡) = cos(2𝜋𝑓0𝑡) be a continuous-time signal for −∞ < 𝑡 < ∞.  6 points. 

i. From the block diagram below, derive a formula for 𝑦(𝑡) and write it as a sum of cosines.  

𝒚(𝒕) = 𝒙𝟐(𝒕) = 𝐜𝐨𝐬𝟐(𝟐𝝅𝒇𝟎𝒕) =
𝟏

𝟐
+

𝟏

𝟐
𝐜𝐨𝐬(𝟐𝝅(𝟐𝒇𝟎)𝒕) 

ii. Let 𝑓0 = 3000 𝐻𝑧.  What negative, zero, and positive frequencies are present in 𝑦(𝑡)?  

Frequencies present are −𝟐 𝒇𝟎 , 0, and 𝟐 𝒇𝟎 , i.e. −6000 Hz, 0 Hz, and 6000 Hz. 

(b) Let 𝑥(𝑡) = cos(2𝜋𝑓0𝑡) be a continuous-time signal for −∞ < 𝑡 < ∞. 12 points. 

i. Derive a formula for the discrete-time signal 𝑥[𝑛] obtained from sampling 𝑥(𝑡) at a sampling 

rate of 𝑓𝑠. 

𝒙[𝒏] = 𝒙(𝒕)]𝒕=𝒏𝑻𝒔
= 𝐜𝐨𝐬(𝟐𝝅𝒇𝟎(𝒏𝑻𝒔)) = 𝐜𝐨𝐬 (𝟐𝝅

𝒇𝟎

𝒇𝒔
𝒏) 

ii. Give a formula for the discrete-time frequency 𝜔0 of 𝑥[𝑛] in terms of 𝑓0 and 𝑓𝑠. 

𝝎𝟎 = 𝟐𝝅
𝒇𝟎

𝒇𝒔

 

iii. From the block diagram below, derive a formula for 𝑦[𝑛] and write it as a sum of cosines.   

𝒚[𝒏] = 𝒙𝟐[𝒏] = 𝐜𝐨𝐬𝟐(𝝎𝟎𝒏) =
𝟏

𝟐
+

𝟏

𝟐
𝐜𝐨𝐬(𝟐𝝅(𝟐𝝎𝟎)𝒏) 

iv. Let 𝑓0 = 3000 Hz and 𝑓𝑠 = 8000 Hz.  What negative, zero and positive discrete-time 

frequencies are present in 𝑦[𝑛] between – rad/sample and  rad/sample?    

From part (a) ii, frequencies present are −6000 Hz, 0 Hz, and 6000 Hz. The component 

at -6000 Hz will alias to 2000 Hz, and the component at 6000 Hz will alias to -2000 Hz.  

The discrete-time frequencies are −
𝝅

𝟐
 , 0, and 

𝝅

𝟐
 in units of rad/sample. 

(c) Consider a 10th order infinite impulse response (IIR) filter with 10 complex-valued poles in 

conjugate pairs (i.e. 𝛼 ± 𝑗𝛽) and 10 complex-valued zeros in conjugate pairs. None of the poles is 

real-valued. None of the zeros is real-valued. 6 points.  Assume input signal is real-valued. 

i. If the filter were implemented as a cascade of biquads (i.e. second-order sections), 

how many real-valued multiplications would be needed? 

Each biquad has a conjugate symmetric pair of poles and a conjugate symmetric pair 

of zeros; hence, it has five real-valued coefficients in its difference equation. 

5 biquads x 5 real multiplications/biquad = 25 real multiplications 

ii. If the filter were implemented as a cascade of first-order sections, how many real-valued 

multiplications would be needed?  

A first-order section has three complex-valued coefficients.  Pole is located at 𝒛 = 𝒂𝟏. 

𝒚[𝒏] = 𝒂𝟏𝒚[𝒏 − 𝟏] + 𝒃𝟎𝒙[𝒏] + 𝒃𝟏𝒙[𝒏 − 𝟏] 

Each complex-valued multiplication takes four real-valued multiplications. 

(𝒂 + 𝒋𝒃)(𝒄 + 𝒋𝒅) = (𝒂𝒄 − 𝒃𝒅) +  𝒋(𝒃𝒄 + 𝒂𝒅) 

10 first-order sections x 12 real multiplications/section = 120 real multiplications 

The next page has a more detailed answer that would find 95 real multiplications.  

F16 Midterm 1.2 

Labs 2 & 3 

Lectures 1 & 3 & 4 

HW 1.3 

HW 3.3 

JSK Ch. 3 & 5 

Lecture Slide 6-5 F12 Midterm 1.2 



We can refine the answer to problem 1.4(c)2 to take into account that the input signal to the 

cascade of 10 first-order filters is real-valued, the output of the cascade is real-valued, and gain 

for each section is real-valued.  This is a more detailed answer than expected on a midterm exam. 

The difference equation for one of the first-order sections is 

𝒚[𝒏] = 𝒂𝟏𝒚[𝒏 − 𝟏] + 𝒃𝟎𝒙[𝒏] + 𝒃𝟏𝒙[𝒏 − 𝟏] 

Since the first-order section has complex-valued pole p0, complex-valued zero z0, and real-valued 

gain b0, the feedback coefficient a1 = p0 is complex-valued.  The zero location is at –b1/b0, so b1 is 

complex-valued since b0 is real-valued. 

Multiplying a real number and a complex-number takes two real-multiplications. 

For the first first-order section, the input x[n] is real-valued and the output y[n] is complex-

valued.  Hence, the first first-order section will require 4 real multiplications for a1 y[n-1], 1 real 

multiplication for b0 x[n], and 2 real multiplications for b1 x[n-1]. This takes a total of 7 real 

multiplications. 

The next 8 remaining first-order sections will each take 4 + 2 + 4 = 10 real multiplications, for a 

total of 80 real multiplications. 

In the last first-order section, y[n] will be real-valued and the section will take 8 real 

multiplications. 

The cascade of 10 first-order sections will take 95 real multiplications. 

 

Additional explanation for problem 1.4(c).  Not expected for students to include in their answers. 

 


