

The University of Texas at Austin

Dept. of Electrical and Computer Engineering

Midterm #1 Version 3.0

Date: Oct. 13, 2021 Course: EE 445S Evans

Name: Straits Dire

Last, First

 Exam duration. The exam is scheduled to last 75 minutes.

 Materials allowed. You may use books, notes, your laptop/tablet, and a calculator.

 Disable all networks. Please disable all network connections on all computer systems.

You may not access the Internet or other networks during the exam.

 Electronics. Power down phones. No headphones. Mute your computer systems.

 Fully justify your answers. When justifying your answers, reference your source and page

number as well as quote the particular content in the source for your justification. You

could reference homework solutions, test solutions, etc.

 Matlab. No question on the test requires you to write or interpret Matlab code. If you base

an answer on Matlab code, then please provide the code as part of the justification.

 Put all work on the test. All work should be performed on the quiz itself. If more space

is needed, then use the backs of the pages.

 Academic integrity. By submitting this exam, you affirm that you have not received help

directly or indirectly on this test from another human except your instructor, Prof. Evans,

and that you did not provide help, directly or indirectly, to another student taking this exam.

 Problem Point Value Your score Topic

Pick Withers 1 24 Sinusoidal Generation

David Knopfler 2 24 FIR Filter Design

Mark Knopfler 3 28 Discrete-Time Audio Effects

John Illsley 4 24 Mystery Systems

 Total 100

Problem 1.1. Sinusoidal Generation. 24 points.

You’re asked to generate one period of a discrete-time cosine signal 𝑦[𝑛]:

 The continuous-time frequency is 131 Hz (‘C’ note on the Western scale in the third octave).

 The sampling rate 𝑓𝑠 is 8,000 Hz.

(a) What is the discrete-time frequency in rad/sample of the discrete-time cosine signal? 4 points.

𝒙(𝒕) = 𝐜𝐨𝐬(𝟐 𝝅 𝒇𝟎 𝒕) where 𝒇𝟎 = 𝟏𝟑𝟏 𝐇𝐳.

𝒙[𝒏] = 𝒙(𝒏 𝑻𝒔) = 𝒙 (
𝒏

𝒇𝒔
) = 𝐜𝐨𝐬 (𝟐 𝝅

𝒇𝟎

𝒇𝒔
 𝒏) = 𝐜𝐨𝐬(𝝎𝟎 𝒏)

where 𝝎𝟎 = 𝟐 𝝅
𝒇𝟎

𝒇𝒔
= 𝟐 𝝅

𝟏𝟑𝟏

𝟖𝟎𝟎𝟎
 is the discrete-time frequency in rad/sample.

(b) What is the fundamental period of the discrete-time cosine signal in samples? 4 points.

Per the Handout on Discrete-Time Periodicity, a sinusoidal signal with discrete-time

frequency, where the common factors between integers N and L have been removed,

𝝎𝟎 = 𝟐 𝝅
𝒇𝟎

𝒇𝒔
= 𝟐 𝝅

𝑵

𝑳

has a discrete-time fundamental period of L samples. In the period of L samples, there are N

continuous-time periods of a continuous-time sinusoidal signal at frequency 𝒇𝟎.

(c) Give a difference equation whose impulse response will generate the discrete-time cosine signal.

4 points. From homework problem 0.4, y[n] = (2 cos 0) y[n-1] - y[n-2] + x[n] - (cos 0) x[n-1]

with initial conditions y[-1], y[-2], and x[-1] being zero as necessary conditions for LTI.

(d) Compare the run-time complexity for the difference equation and the lookup table method. The

lookup table would store an entire period of cosine values computed offline. 8 points.

Method Total Memory

Needed

Multiplications

per output sample

Reads per

output sample

Writes per

output sample

Difference equation 7 words 2 6 words 4 words

Lookup table 8001 words 0 1 word 1 word

The difference equation contains two constants, current input value, previous input value,

current output value, and two previous output values. Total memory of 7 words.

The difference equation has two multiplications (2 cos 0) y[n-1] and (cos 0) x[n-1] per

output sample. To compute y[n], the other six values have to be read once each. Also, we’ll

need to write the result y[n], and update y[n-1], y[n-2] and x[n-1].

Cosine lookup table stores one period of 𝑳 = 𝟖𝟎𝟎𝟎 samples. We use 𝒏 = 𝟎, 𝟏, … , 𝑳 − 𝟏 to

read the precomputed value from the table for 𝐜𝐨𝐬(𝝎𝟎 𝒏) and write it out as y[n].

(e) How would you use the lookup table for the cosine signal to generate a discrete-time sine signal

with the same frequency? 4 points.

With 𝐬𝐢𝐧(𝜽) = 𝐜𝐨𝐬(𝜽 − 𝝅/𝟐), we delay the cosine by ¼ of a period: 𝒏𝟎 = L/4 = 2000 samples.

To generate 𝐬𝐢𝐧(𝝎𝟎 𝒏) = 𝐜𝐨𝐬(𝝎𝟎 (𝒏 − 𝒏𝟎)), we start with 𝒏 = 𝟎 which is index −𝒏𝟎 into the

cosine lookup table, which is out of bounds. Due to periodicity, index −𝒏𝟎 is the same as

−𝒏𝟎 + 𝑳 = 𝟔𝟎𝟎𝟎 into the cosine table. We start with index 6000 into the cosine table. As we

increment the index and reach the end of the lookup table, we go to the first entry (index 0).

Note: The above answer in part (d) was my initial answer and is plenty for a timed test.

Upon further analysis given on the next page, I learned that the determination of the value of

𝒏𝟎 is a bit more complicated.

Lecture 1 & 4 Lab 2

HW 0.3 & 0.4 F 2016 Midterm 1.2

Lecture Slides 1-16 and 1-19 to 1-22

Discrete-Time Periodicity

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DiscreteTimePeriodicity.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DiscreteTimePeriodicity.pdf

(d) We would like to choose the delay 𝒏𝟎 for 𝒙[𝒏] = 𝐜𝐨𝐬(𝝎𝟎 𝒏) to give 𝒚[𝒏] = 𝐬𝐢𝐧(𝝎𝟎 𝒏):

𝒚[𝒏] = 𝒙[𝒏 − 𝒏𝟎] = 𝐜𝐨𝐬 (𝟐 𝝅
𝑵

𝑳
 (𝒏 − 𝒏𝟎)) = 𝐜𝐨𝐬 (𝟐 𝝅

𝑵

𝑳
𝒏 − 𝟐 𝝅

𝑵

𝑳
𝒏𝟎) = 𝐜𝐨𝐬(𝝎𝟎 𝒏 − 𝜽)

We would like the phase shift 𝜽 to be
𝝅

𝟐
+ 𝟐𝝅𝒌 where 𝒌 is an integer:

𝟐 𝝅
𝑵

𝑳
𝒏𝟎 =

𝝅

𝟐
+ 𝟐𝝅𝒌 𝒏𝟎 = (

𝟏

𝟒
+ 𝒌)

𝑳

𝑵
= (

𝟏+𝟒𝒌

𝟒
)

𝑳

𝑵
= (

𝟏+𝟒𝒌

𝟒𝑵
) 𝑳

For example, when 𝑵 = 𝟏 and 𝒌 = 𝟎, we would have 𝒏𝟎 =
𝑳

𝟒
 . For 𝑵 = 𝟏𝟑𝟏 and 𝑳 = 𝟖𝟎𝟎𝟎:

𝒏𝟎 = (
𝟏 + 𝟒𝒌

𝟒𝑵
) 𝑳 = (

𝟏 + 𝟒𝒌

𝑵
)

𝑳

𝟒
= (

𝟏 + 𝟒𝒌

𝟏𝟑𝟏
) 𝟐𝟎𝟎𝟎

We can try different values for integer 𝒌 to find integer 𝒏𝟎. When 𝒌 = 𝟗𝟖, 𝒏𝟎 = 𝟔𝟎𝟎𝟎. We would

start indexing into the cosine table at -6000 which is same as an index of 2000 due to periodicity.

Deeper dive: We would like to have the term below be an integer, which we’ll denote as m:

(
𝟏+𝟒𝒌

𝟏𝟑𝟏
) = 𝒎 𝟏 + 𝟒𝒌 = 𝟏𝟑𝟏𝒎 𝟏 = 𝟏𝟑𝟏𝒎 − 𝟒𝒌

The equation 𝟏𝟑𝟏𝒎 − 𝟒𝒌 = 𝟏 is Bezout’s identity which can be solved efficiently by Euclid’s

algorithm. This is not a topic that would have appeared in the course or its pre-requisites.

Examples: We’ll use a shorter discrete-time period L = 20 to visualize results. Examples show

two different values for −𝒏𝟎 to achieve a phase shift of -/2 for the same value of L. In example

#1, 𝒏𝟎 ≠
𝑳

𝟒
. N and L must be relatively prime. To satisfy the Sampling Theorem, 𝑳 > 𝟐𝑵.

N = 9 and L = 20:

𝝎𝟎 = 𝟐 𝝅 (
𝟗

𝟐𝟎
)

𝒏𝟎 = (
𝟏 + 𝟒𝒌

𝟗
) 𝟓

𝒌 = 𝟐 to give 𝒏𝟎 = 𝟓

Shift of -5 samples is

same as shift of 15

samples due to

period of 20 samples

Example #2

15 samples

Let N = 7 and L = 20:

𝝎𝟎 = 𝟐 𝝅 (
𝟕

𝟐𝟎
)

𝒏𝟎 = (
𝟏 + 𝟒𝒌

𝟕
) 𝟓

𝒌 = 𝟓 to give 𝒏𝟎 = 𝟏𝟓.

Shift by -15 samples is

same as shift of 5

samples due to period

of 20 samples.

5 samples

Example #1

https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Problem 1.2 FIR Filter Design. 24 points.

You’re asked to design a lowpass linear phase finite impulse response (FIR) filter to meet the

following specifications:

 Pass frequencies in octave 0, Western scale, from 16.35160 Hz (‘C’) to 30.8611 Hz (‘B’)

 Zero out odd harmonics of the 60 Hz powerline frequency (60 Hz, 180 Hz, 300 Hz, etc.)

 Sampling rate is less than 1000 Hz

(a) What sampling rate would you choose? Why? 12 points

From the Sampling Theorem, sample at 𝒇𝒔 > 𝟐 𝒇𝒎𝒂𝒙 to be able to reconstruct the

original signal from its sampled version. Frequencies captured by sampling are

−
𝟏

𝟐
𝒇𝒔 < 𝒇𝒎𝒂𝒙 <

𝟏

𝟐
𝒇𝒔 and these are the frequencies used in reconstructing a signal

Considerations for choosing the sampling rate 𝒇𝒔 < 𝟏𝟎𝟎𝟎 𝐇𝐳 :

 The maximum passband frequency is 30.8611 Hz. 𝒇𝒔 > 𝟐 (𝟑𝟎. 𝟖𝟔𝟏𝟏 𝐇𝐳)

 We want to remove odd harmonics of the main powerline frequency of 60 Hz, which are

60 Hz, 180 Hz, 300 Hz, 420 Hz, 540 Hz, 660 Hz, 780 Hz, etc. Some will alias.

 Our sampling rate 𝒇𝒔 < 𝟏𝟎𝟎𝟎 𝐇𝐳, so any odd harmonics of 60 Hz above
𝟏

𝟐
𝒇𝒔 will alias.

The harmonics are 60 Hz, 180 Hz, 300 Hz, 420 Hz, 540 Hz, 660 Hz, 780 Hz, 900 Hz, etc.

 Use the highest sampling rate possible for better audio quality.

If we choose a sampling rate between adjacent odd harmonic frequencies, all the odd

harmonics that alias will alias to one of the odd harmonic frequencies that didn’t alias.

When 𝒇𝒔 = 𝟐𝟒𝟎 𝐇𝐳, the odd harmonic at 60 Hz does not alias. For the other odd harmonics:

 180 Hz aliases to 180 Hz – 240 Hz = –60 Hz and –180 Hz aliases to –180 Hz + 240 Hz = 60 Hz

 300 Hz aliases to 300 – 240 = 60 Hz and –300 Hz aliases –300 + 240 = –60 Hz, etc.

Choose 𝒇𝒔 = 𝟗𝟔𝟎 𝐇𝐳

(b) Give the coefficients of the FIR filter to meet the specifications. 12 points.

Solution #1: Averaging Filter. From the handout Designing Averaging

Filters, an averaging filter has a null bandwidth of 𝒇𝒔 / 𝑵 and we

would like the first null to be at 60 Hz so that we can pass octave 0:
𝒇𝒔

𝑵
= 𝟔𝟎 𝑵 =

𝒇𝒔

𝟔𝟎
=

𝟗𝟔𝟎

𝟔𝟎
= 𝟏𝟔

The averaging filter would zero out frequencies that are multiples

of 60 Hz, which would include the odd and even harmonics. It is

zeroing out twice as many frequencies as needed, but still meets

the specifications. See next page for additional analysis.

Solution #2: Manually place zeros. MATLAB command poly

can convert a list of roots (zeros) to an unfactored polynomial.

We place a zero on the unit circle at the angle of each positive and negative discrete-time

frequency to be zeroed out. There are four of each. The zeros

𝒆±𝒋𝝎𝟎, 𝒆±𝒋𝟑𝝎𝟎, 𝒆±𝒋𝟓𝝎𝟎, 𝒆±𝒋𝟕𝝎𝟎 where 𝝎𝟎 = 𝟐 𝝅
𝟔𝟎

𝟗𝟔𝟎
=

𝝅

𝟖
 give coefficients [1 0 0 0 0 0 0 0 1].

Filter has linear phase, but multiband in selectivity instead of lowpass. (See next page.)

HW 0.1 1.1

1.3 2.1 2.2

2.3 & 3.2

Lab #3

Lectures 3 5 & 6

JSK Ch. 7

Midterm 1.1

F 2020

Sp 2020

F 2018

F 2016

Sp 2010

Designing Averaging Filters

Midterm Problems:

1.2 Sp 19, 1.3(d) Sp 19, 1.2 F16

In-Lecture Assignment #2

Lecture Slides

1-16, 1-21 & 3-

18
Lecture 4

Lecture Slides 6-5 to 6-10

In-Lecture #2 Assignment

HW 1.1 2.1 2.2 2.3 & 3.1

Labs 2 & 3

http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf

Additional analysis for problem 1.2(b). This would not be expected on a test.

Solution #1: Averaging filter.

h = 1/16)*ones(1,16); % impulse response is a rectangular pulse

freqz(h); % frequency response is a periodic sinc

Magnitude response shows discrete-time frequencies at multiples of

𝝅

𝟖
 are being zeroed out.

Filter coefficients are even symmetric about the midpoint, which means the FIR filter has

linear phase.

Solution #2: Manually place zeros to design the FIR filter.

Matlab code to determine the filter coefficients from the zero locations

w0 = pi/8;

zerolist = exp(j * w0 * [1 -1 3 -3 5 -5 7 -7]);

h = poly(zerolist)

>> [1 0 0 0 0 0 0 0 1]

freqz(h);

Magnitude response shows discrete-time frequencies
𝟏

𝟖
𝝅,

𝟑

𝟖
𝝅,

𝟓

𝟖
𝝅 𝐚𝐧𝐝

𝟕

𝟖
𝝅 being zeroed out.

Filter coefficients [1 0 0 0 0 0 0 0 1] are even symmetric about the midpoint, which means

the FIR filter has linear phase.

The magnitude response has multiple passbands. It’s not lowpass.

This filter is called a comb filter. We’ll see it later in lab #7 on guitar effects.

https://en.wikipedia.org/wiki/Comb_filter

Problem 1.3 Discrete-Time Audio Effects. 28 points.

The notes on the Western scale on an 88-key piano keyboard grouped into octaves follow:

The frequency of note A4 (i.e. ‘A’ in the 4th octave) at 440 Hz is twice the frequency of A3 at 220 Hz.

This type of octave spacing occurs for all the notes on the Western scale.

Design a discrete-time audio effects system that will extract the fourth octave of frequencies and then

alter that octave of frequencies to be in the next higher octave:

All notes on the fourth octave should appear as the same notes in the next higher octave.

Bandpass filter hk[n] passes frequencies in the kth octave and attenuates other frequencies.

For signals x[n] and x4[n], the sampling rate 𝑓𝑠 is 8,000 Hz.

(a) Design a second-order infinite impulse response (IIR)

bandpass filter h4[n] to pass the fourth octave and

attenuate the other octaves. In the fourth octave, the

lowest note is 262 Hz and highest note is 494 Hz.

12 points.

i. Give formulas for the pole and zero locations.

ii. Plot poles and zeros on the diagram on the right.

Place a pole 𝒑𝟎 at the center frequency in the fourth

octave and near but inside the unit circle to define the

passband in positive frequencies:

𝒇𝒄𝒆𝒏𝒕𝒆𝒓 =
𝟐𝟔𝟐 𝑯𝒛 + 𝟒𝟗𝟐 𝑯𝒛

𝟐
= 𝟑𝟕𝟕 𝑯𝒛

𝝎𝒄𝒆𝒏𝒕𝒆𝒓 = 𝟐 𝝅
𝒇𝒄𝒆𝒏𝒕𝒆𝒓

𝒇𝒔
= 𝟐 𝝅

𝟑𝟕𝟕

𝟖𝟎𝟎𝟎

𝒑𝟎 = 𝟎. 𝟗𝟓 𝒆𝒋 𝝎𝒄𝒆𝒏𝒕𝒆𝒓 and 𝒑𝟏 = 𝟎. 𝟗𝟓 𝒆−𝒋 𝝎𝒄𝒆𝒏𝒕𝒆𝒓

(b) What system would you use for the ?? block? Why? 9 points.

Solution #1: Squaring block. Effect on single input frequency:

𝒚[𝒏] = 𝒙𝟐[𝒏] = 𝐜𝐨𝐬𝟐(𝝎𝟎 𝒏) =
𝟏

𝟐
+

𝟏

𝟐
𝐜𝐨𝐬(𝟐 𝝎𝟎 𝒏)

It doubles the input frequency and creates a zero frequency (DC) term.

Any single note in the fourth octave would be doubled to be the same

note in the fifth octave, and DC term would be filtered out by the fifth octave bandpass filter.

Solution #2: Downsampling by 2.

Re(z)

Im(z)
F 2019 Midterm 1.3(a)

Sp 2017 Midterm 1.3

Sp 2021 Midterm 1.4(a)

Sp 2020 Midterm 1.4(b)

F 2016 Midterm 1.3(c)

F 2015 Midterm 1.3(a)

Sp 2010 Midterm 1.3(c)

Place zeros on the unit circle to

define stopbands centered at

0 rad/sample and rad/sample:

𝒛𝟎 = 𝒆𝒋 𝟎 = 𝟏 and 𝒛𝟏 = 𝒆𝒋 𝝅 = −𝟏

HW 1.3

Lecture slides 3-7 & 3-10

X

X
O O

Lecture Slides 6-5 to 6-10

In-Lecture #2 Assignment

HW 1.1 2.1 2.2 2.3 & 3.1

Labs 2 & 3

(c) What would the output be for your proposed system if two notes in the fourth octave were being

played at the same time? 7 points.

Solution #1: Let the input signal to the squaring block be a sum of two cosine signals at different

note frequencies 𝝎𝟏 and 𝝎𝟐 in the fourth octave.

𝒙[𝒏] = 𝐜𝐨𝐬(𝝎𝟏 𝒏) + 𝐜𝐨𝐬(𝝎𝟐 𝒏)

𝒚[𝒏] = 𝒙𝟐[𝒏] = (𝐜𝐨𝐬(𝝎𝟏 𝒏) + 𝐜𝐨𝐬(𝝎𝟐 𝒏))𝟐

𝒚[𝒏] = 𝐜𝐨𝐬𝟐(𝝎𝟏 𝒏) + 𝟐 𝐜𝐨𝐬(𝝎𝟏 𝒏) 𝐜𝐨𝐬(𝝎𝟐 𝒏) + 𝐜𝐨𝐬𝟐(𝝎𝟐 𝒏)

We know from part (b) that 𝐜𝐨𝐬𝟐(𝝎𝟎 𝒏) =
𝟏

𝟐
+

𝟏

𝟐
𝐜𝐨𝐬(𝟐 𝝎𝟎 𝒏).

The middle term 𝟐 𝐜𝐨𝐬(𝝎𝟏 𝒏) 𝐜𝐨𝐬(𝝎𝟐 𝒏) is the modulation of one cosine by another.

The resulting frequencies are 𝝎𝟏 + 𝝎𝟐 and |𝝎𝟏 − 𝝎𝟐|.

𝒚[𝒏] = 𝟏 +
𝟏

𝟐
𝐜𝐨𝐬(𝟐 𝝎𝟏 𝒏) + 𝐜𝐨𝐬((𝝎𝟏 + 𝝎𝟐) 𝒏) + 𝐜𝐨𝐬((𝝎𝟏 − 𝝎𝟐) 𝒏) +

𝟏

𝟐
𝐜𝐨𝐬(𝟐 𝝎𝟐 𝒏)

The output consists of the following frequencies:

𝟐 𝝎𝟏 the frequency for note #1 in the fifth octave

𝟐 𝝎𝟐 the frequency for note #2 in the fifth octave

𝝎𝟏 + 𝝎𝟐 which will fall in the fifth octave

|𝝎𝟏 − 𝝎𝟐| which fall below the fourth octave

0 frequency

The last two frequencies will be attenuated by the bandpass filter for the fifth octave, but there

will be intermodulation distortion (or audio effect?) in the fifth octave at frequency 𝝎𝟏 + 𝝎𝟐.

Solution #2: The two notes in the fourth octave will show up as their respective notes in the

fifth octave. Downsampling by 2 will also double the bandwidth around the principal

frequency. One can see this is in problem 1.4(b) on this test.

Please note that this discrete-time audio effect system only alters the principal frequencies of notes.

It filters out all the harmonics of the note. It’s the harmonics that gives richness and texture to

the notes. It’s the harmonics that allow us to identify what instrument played it.

Problem 1.4. Mystery Systems. 24 points.

You’re trying to identify unknown discrete-time systems.

You input a discrete-time chirp signal 𝑥[𝑛] and look at the output to figure out what the system is.

The discrete-time chirp is formed by sampling a chirp signal that sweeps 0 to 4000 Hz over 0 to 5s

𝑥(𝑡) = cos(2𝜋𝑓1𝑡 + 2𝜋𝜇𝑡2)

where 𝑓1 = 0 Hz, 𝑓2 = 4000 Hz, and 𝜇 =
𝑓2−𝑓1

2 𝑡max
=

4000 Hz

10 𝑠
= 400 Hz2. Sampling rate 𝑓𝑠 is 8000 Hz.

In each part below, identify the unknown system as one of the following:

1. filter – give selectivity (lowpass, highpass, bandpass, bandstop) and passband/stopband frequencies

2. upsampler – give upsampling factor

3. downsampler – give downsampling factor

(a) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right). 12 points.

From the output spectrogram, frequencies from 0 Hz to about 1200 Hz are passed.

Principal frequencies in the chirp above about 1300 Hz are severely attenuated and their

medium blue color indicates at attenuation vs. bright yellow of about 100 dB.

Lowpass Filter with passband frequency ~1200 Hz and stopband frequency ~1300 Hz.

(b) Given spectrograms of the chirp input signal 𝑥[𝑛] (left) and output signal 𝑦[𝑛] (right). 12 points.

When compared to the input spectrogram, the output spectrogram has half the duration in

time and its principal frequency is increasing. From 1.25s to 2.5s, aliasing occurs.

Downsampling by 2, per homework problem 2.2(d).

HW 1.2 1.3 & 2.2 In-Lecture #1 Assignment

Handout Common Signals in Matlab

Midterm 1: 1.4 Sp11, 1.3 Sp15, 1.5 Sp19, 1.4 F19 & 1.4 Sp20

Lecture 4

HW 0.1 1.1

1.3 2.1 & 2.2

Lab #3

Lectures

1 3 5 & 6

JSK Ch. 7

Midterm 1.1

F 2020

Sp 2020

F 2018

Designing

Averaging

Filters

HW 0.3 & 2.2

Lecture

4

Midterm

Problems

1.2 F 18

1.2(d) Sp 18

1.2(d) F 09

http://users.ece.utexas.edu/~bevans/courses/realtime/handouts/CommonSignalsInMatlab.pptx
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf
http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/01_Sinusoids/DesigningAveragingFilters.pdf

Matlab code to generate the spectrograms for problem 1.4.

(a) Lowpass filter

fs = 8000;

Ts = 1 / fs;

tmax = 5;

t = 0 : Ts : tmax;

%% Create chirp signal

f1 = 0;

f2 = fs/2;

mu = (f2 - f1) / (2*tmax);

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2));

%% Design lowpass filter

fnyquist = fs/2;

fpass = 1000;

fstop = 1200;

ctfrequencies = [0 fpass fstop fnyquist];

idealAmplitudes = [1 1 0 0];

pmfrequencies = ctfrequencies / fnyquist;

filterOrder = 200;

h = firpm(filterOrder, pmfrequencies, idealAmplitudes);

h = h / sum(h .^ 2);

y = conv(x, h);

%%% Plot spectrogram of signal

blockSize = 1024;

overlap = 1023;

figure;

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis');

(b) Downsampling by 2

fs = 8000;

Ts = 1 / fs;

tmax = 5;

t = 0 : Ts : tmax;

%% Create chirp signal

f1 = 0;

f2 = fs/2;

mu = (f2 - f1) / (2*tmax);

x = cos(2*pi*f1*t + 2*pi*mu*(t.^2));

%% Downsampling by 2

y = x(1:2:end);

blockSize = 1024;

overlap = 1023;

spectrogram(y, blockSize, overlap, blockSize, fs, 'yaxis');

