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• Exam duration.  The exam is scheduled to last 75 minutes. 

• Materials allowed.  You may use books, notes, your laptop/tablet, and a calculator.  

• Disable all networks.  Please disable all network connections on all computer systems. 

You may not access the Internet or other networks during the exam. 

• Electronics.  Power down phones. No headphones. Mute your computer systems. 

• Fully justify your answers. When justifying your answers, reference your source and page 

number as well as quote the particular content in the source for your justification.  You 

could reference homework solutions, test solutions, etc. 

• Matlab. No question on the test requires you to write or interpret Matlab code.  If you base 

an answer on Matlab code, then please provide the code as part of the justification. 

• Put all work on the test.  All work should be performed on the quiz itself.  If more space 

is needed, then use the backs of the pages. 

• Academic integrity.  By submitting this exam, you affirm that you have not received help 

directly or indirectly on this test from another human except your instructor, Prof. Evans, 

and that you did not provide help, directly or indirectly, to another student taking this exam. 

 

 

Problem Point Value Your score Topic 

1 28  FIR Filter Analysis 

2 25  IIR Filter Analysis 

3 27  Filter Design 

4 24  Potpourri 

Total 104   

  

Instructor caught the error of the points adding to 104 while grading the test.  

The original intent was to have problem 1 count as 24 points. 



Problem 1.1 FIR Filter Analysis.  28 points. 

Consider the following causal linear time-invariant (LTI) discrete-time finite impulse response (FIR) 

filter with input x[n] and output y[n] described by 

 y[n] = a x[n] + b x[n-1] – b x[n-3] – a x[n-4] 

for n  0, where a and b are real-valued positive coefficients. 

Please note that the coefficient in front of the x[n-2] term is zero. 

(a) What are the initial conditions and their values?  Why?  6 points. 

Let n=0:  y[0] = a x[0] + b x[-1] – b x[-3] – a x[-4].  

Let n=1:  y[1] = a x[1] + b x[0] – b x[-2] – a x[-3]. 

Let n=2:  y[2] = a x[2] + b x[1] – b x[-1] – a x[0].   etc. 

Initial conditions are x[-1], x[-2], x[-3], x[-4] which must be zero for linearity and time-

invariant properties to hold.  x[0] is the first input value and not an initial condition. 

Note: A causal system does not depend on future input values or future output values. 

(b) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

 
(c) Derive a formula for the transfer function in the z-domain and the region of convergence.  4 points. 

Z-transform both sides of difference equation, knowing that all initial conditions are zero: 

Y(z) = a X(z) + b z -1 X(z) – b z -3 X(z) – a z -4 X(z)  which means 

 𝑯(𝒛) =
𝒀(𝒛)

𝑿(𝒛)
= 𝒂 + 𝒃 𝒛−𝟏 − 𝒃 𝒛−𝟑  − 𝒂 𝒛−𝟒 for 𝒛 ≠ 𝟎 

(d) Give a formula for the discrete-time frequency response of the filter.  3 points. 

We can convert the transfer function H(z) into the discrete-time frequency domain by 

substituting z = exp(j ) because FIR LTI systems are always Bounded-Input Bounded-

Output stable, or equivalently, because the region of convergence includes the unit circle: 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝑯(𝒛)]𝒛=𝒆𝒋𝝎 = 𝒂 + 𝒃 𝒆−𝒋𝝎 − 𝒃 𝒆−𝟑𝒋𝝎 − 𝒂 𝒆−𝟒𝒋𝝎 

(e) Give a formula for the phase response vs. discrete-time frequency. 6 points. 

𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝒆−𝒋𝟐𝝎(𝒂 𝒆𝒋𝟐𝝎  + 𝒃 𝒆𝒋𝝎 − 𝒃 𝒆−𝒋𝝎 − 𝒂 𝒆−𝒋𝟐𝝎) = 𝟐(𝒃 𝐬𝐢𝐧(𝝎) + 𝒂 𝐬𝐢𝐧(𝟐𝝎)) 𝒋 𝒆−𝒋𝟐𝝎 

With 𝒋 = 𝒆𝒋
𝝅

𝟐 , ∠𝑯𝒇𝒓𝒆𝒒(𝝎) =
𝝅

𝟐
− 𝟐𝝎  except for phase jumps (discontinuities) of  at 

frequencies that are zeroed out and don’t get through, which is generalized linear phase. 

(f) Give a formula for the group delay vs. discrete-time frequency. 3 points. 

𝑮𝑫(𝝎) = −
𝒅

𝒅𝝎
∠𝑯𝒇𝒓𝒆𝒒(𝝎) = 𝟐 𝐬𝐚𝐦𝐩𝐥𝐞𝐬   
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Note: The four initial conditions 

are visible here as the initial 

condition for each unit delay block. 

Lecture slides 3-15 & 5-5 

Lecture slide 5-11 



Problem 1.2 IIR Filter Analysis.  25 points. 

For a second-order infinite impulse response (IIR) filter with poles 𝑝0 and 𝑝1 and zeros 𝑧0 and 𝑧1, the 

transfer function in the z-domain is 

𝐻(𝑧) =
(𝑧 − 𝑧0)(𝑧 − 𝑧1)

(𝑧 − 𝑝0)(𝑧 − 𝑝1)
 

The poles will remain at 𝑝0 = −0.9 and 𝑝1 = 0.9 in this problem.  Region of convergence is |𝑧| > 0.9. 

Each question below will ask you to determine the frequency selectivity (lowpass, highpass, bandpass, 

bandstop, allpass and notch) of the second-order IIR filter with different choices of zero locations. 

(a) From the transfer function 𝐻(𝑧), derive an expression 

for the magnitude response of the filter.  3 points. 

We can convert the transfer function H(z) into the discrete-time frequency domain by 

substituting z = exp(j ) because the region of convergence includes the unit circle: 

𝑯(𝒆𝒋𝝎) =
(𝒆𝒋𝝎 −  𝒛𝟎)(𝒆𝒋𝝎 − 𝒛𝟏)

(𝒆𝒋𝝎 −  𝒑𝟎)(𝒆𝒋𝝎 − 𝒑𝟏)
 

Then, take the absolute value of both sides: 

|𝑯(𝒆𝒋𝝎)| = |
(𝒆𝒋𝝎 − 𝒛𝟎)(𝒆𝒋𝝎 − 𝒛𝟏)

(𝒆𝒋𝝎 − 𝒑𝟎)(𝒆𝒋𝝎 − 𝒑𝟏)
| =

|𝒆𝒋𝝎 − 𝒛𝟎||𝒆𝒋𝝎 − 𝒛𝟏|

|𝒆𝒋𝝎 − 𝒑𝟎||𝒆𝒋𝝎 − 𝒑𝟏|
 

(b) Let the zeros be 𝑧0 = −0.1 and 𝑧1 = 0.1 as shown 

on the right.  What is the frequency selectivity?  4 points. 

Bandstop.  The frequency (angle) of a pole near but inside 

the unit circle indicates a peak in the magnitude response 

at that frequency.  This comes from the Euclidean distance 

|𝒆𝒋𝝎 − 𝒑𝟎| in the denominator of the magnitude response.  

The minimum distance occurs when 𝝎 is equal to the angle 

of the pole 𝒑𝟎.  The zeros, because they are close to the origin, have little effect on the 

magnitude response due to the |𝒆𝒋𝝎 − 𝒛𝟎| term which is close to 1 in value for any 𝝎. 

(c) Let the zeros continue being real-valued and negatives of each other, i.e. 𝑧0 = −𝑧1.  For every 

frequency selectivity (lowpass, highpass, bandpass, bandstop, allpass and notch) that is possible for 

the second-order IIR filter to achieve, give the values of zeros 𝑧0 and 𝑧1.  You may reuse your 

answer from part (b).  18 points. 

Bandstop filter from part (b) above. 
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Re(z) 

Im(z) 
Allpass filter 

X O X O 

p1 = 0.9 

z1 = 1/0.9 = 1.11 
P9 = -0.9 

z0 = 1/(-0.9) = -1.11 

Midterm 1 

Fall 2010 Prob 1 

Spring 2012 Prob 1 

Fall 2014, Prob 3 

Fall 2019, Prob 2(c) 

 

 

Allpass: Pole-zero 

pairs at same angle 

and reciprocal 

magnitudes. 

Handout O on 

All-pass Filters 

Re(z) 

Im(z) 
Notch filter 

O O 

p1 = 0.9 

z1 = 1.0 

p9 = -0.9 

z0 = -1.0 

Midterm 1 

Spring 2007 Prob 1 

Fall 2011 Prob 1 

Fall 2016 Prob 1 

Spring 2019 Prob 2 

Fall 2019 Prob 2(b) 

HW 3.1(c) 

X X 

One could have also viewed the above 

notch filter as a bandpass filter. 



Problem 1.3 Filter Design.  27 points. 

A stethoscope allows a physician to listen to sounds 

of the circulatory and respiratory system especially 

the heart and lungs.  

A conventional stethoscope uses a tube to directly 

transmit the vibration to the physician’s ear.  

A digital stethoscope uses a microphone and an 

analog-to-digital converter to record the signal. 

This problem will design three discrete-time filters 

placed in cascade for a digital stethoscope. 

Assume a sampling rate of 8000 Hz. 

(a) Noise caused by physical motion of the patient or 

stethoscope occurs at extremely low frequencies (near 0 Hz). Design a first-order IIR 

filter to remove noise due to movement by giving the numeric values of the one pole 

and one zero.  Place the pole and zero on the pole-zero diagram.  9 points. 

Remove noise at extremely low frequencies centered at 0 rad/sample. 

DC notch IIR filter.  Pole at 𝒛 = 𝟎. 𝟗 and zero at 𝒛 = 𝟏. 

This can also be thought of as a highpass filter with a narrowband 

passband. 

(b) The sounds produced by the circulatory and respiratory systems occur at low frequencies (<500 Hz). 

Background noise in a hospital (especially from speech) occurs mostly at frequencies above 500 Hz. 

Design a second-order IIR filter by specifying the two poles and two zeros to remove background 

noise above 500 Hz.  Place the poles and zeros on the pole-zero diagram on the right.  9 points. 

Lowpass filter.  Passband is from 0 to 500 Hz.  We could place poles 

at 250 Hz and -250 Hz. For 250 Hz, the discrete-time frequency is 

𝝎𝟐𝟓𝟎 = 𝟐𝝅
𝟐𝟓𝟎 𝑯𝒛

𝟖𝟎𝟎𝟎 𝑯𝒛
 and pole locations would be at 𝒑𝟎 = 𝟎. 𝟗 𝒆𝒋 𝝎𝟐𝟓𝟎  

and 𝒑𝟏 = 𝟎. 𝟗 𝒆−𝒋 𝝎𝟐𝟓𝟎.  Stopband would be from 550 Hz to 4000 Hz, 

and the zeros could be placed on the unit circle at an angle in this 

range and its negative.  We choose 2000 Hz and -2000 Hz, which 

would put zeros at 𝝅/𝟐 and −𝝅/𝟐. 

(c) The digital stethoscope has two modes: One for listening to respiratory and digestive sounds and one 

for listening to circulatory heart sounds. Design a second-order IIR filter by specifying the two poles 

and two zeros to extract sounds of the heart between 120 Hz and 500 Hz.  Place the poles and zeros 

on the pole-zero diagram on the right.  9 points. 

Bandpass filter with passband from 120 Hz to 500 Hz. 

Poles must be conjugate symmetric because each frequency 

Components has a positive and negative component. 

Place a pole at (500 Hz + 120 Hz)/2 = 310 Hz and at -310 Hz. 

𝒑𝟎 = 𝟎. 𝟗 𝒆𝒋 𝝎𝟑𝟏𝟎 and 𝒑𝟏 = 𝟎. 𝟗 𝒆−𝒋 𝝎𝟑𝟏𝟎  where 𝝎𝟑𝟏𝟎 = 𝟐𝝅
𝟑𝟏𝟎 𝑯𝒛

𝟖𝟎𝟎𝟎 𝑯𝒛
 . 

Put zeros to eliminate 0 and 𝝅 rad/sample, i.e. let 𝒛 = 𝟏 and zero at 𝒛 = −𝟏.  

Plot is from Nourelhuda Mohamed, Hyun-Seok Kim, Kyu-Min Kang, Manal Mohamed, Sung-Hoon Kim, and Jae Gwan Kim. "Heart and Lung 
Sound Measurement Using an Esophageal Stethoscope with Adaptive Noise Cancellation" Sensors 21, no. 20: 6757, 2021.  

https://doi.org/10.3390/s21206757
https://doi.org/10.3390/s21206757


Problem 1.4.  Potpourri.  24 points. 

(a) Consider the signal 𝑥[𝑛] = (−1)𝑛 observed for all time −∞ < 𝑛 < ∞.  12 points. 

I. If we express 𝑥[𝑛] = cos(𝜔0 𝑛) observed for all time −∞ < 𝑛 < ∞, give the value of 𝜔0.  

4 points. 

𝝎 = 𝝅 because 𝐜𝐨𝐬(𝝅 𝒏) = (−𝟏)𝒏 

 

 

II. Give a formula for 𝑦[𝑛] that is the output of downsampling by 2 applied to 𝑥[𝑛].  4 points 

Downsampling by 2 of signal 𝒙[𝒏] keeps the even-indexed values of 𝒙[𝒏]. 

𝒚[𝒏] = 𝒙[𝟐𝒏] = 𝐜𝐨𝐬(𝝅 (𝟐𝒏)) = 𝐜𝐨𝐬(𝟐𝝅𝒏) = 𝟏   𝐟𝐨𝐫 − ∞ < 𝒏 < ∞ 

 

III. In part II above, explain why the principal frequency of 𝑥[𝑛] became the principal frequency 

in 𝑦[𝑛].  4 points 

𝒚[𝒏] = 𝒙[𝟐𝒏] = 𝐜𝐨𝐬(𝝅 (𝟐𝒏)) = 𝐜𝐨𝐬(𝟐𝝅𝒏) = 𝟏   𝐟𝐨𝐫 − ∞ < 𝒏 < ∞.   

The principal frequency is 𝝅 rad/sample in 𝒙[𝒏] and 𝟐𝝅 rad/sample in 𝒚[𝒏]. 

Downsampling by 2 doubles the frequencies in 𝒙[𝒏] which causes the frequencies in the 

input signal from 𝝅/𝟐 to 𝝅 to alias.  In this case, the input frequency 𝝅 becomes the 

frequency 𝟐𝝅 rad/sample which aliases to 𝟎 rad/sample (DC). 

 

(b) Upsampling by L can be used to increase the sampling rate of the input signal by a factor of L and  

downsampling by M can be used to decrease the sampling rate of the input signal by a factor of M. 

I. What is the sampling rate change from 𝑥[𝑛] to 𝑦[𝑛] for the system below?  6 points. 

 

 

 

 

 

 

 

 

 

 

II. What is the sampling rate change from 𝑥[𝑛] to 𝑦[𝑛] for the system below?  6 points. 

 

Upsampling by L increases the sampling 

rate by L which is then undone by 

downsampling by L which decreases the 

sampling rate by L.  There is no 

sampling rate change from 𝒙[𝒏] to 𝒚[𝒏]. 

Upsampling by L increases the sampling 

rate by L and downsampling by M 

decreases the sampling rate by M.  The 

sampling rate change is 𝑳/𝑴 from 𝒙[𝒏] 
to 𝒚[𝒏]. 


