The University of Texas at Austin Dept. of Electrical and Computer Engineering Midterm \#1

Date: March 7, 2014
Course: EE 445S Evans

Name: \qquad
Last,
First

- The exam is scheduled to last 50 minutes.
- Open books and open notes. You may refer to your homework assignments and the homework solution sets.
- Calculators are allowed.
- You may use any standalone computer system, i.e. one that is not connected to a network. Please disable all wireless connections on your computer system(s).
- Please turn off all cell phones.
- No headphones allowed.
- All work should be performed on the quiz itself. If more space is needed, then use the backs of the pages.
- Fully justify your answers. If you decide to quote text from a source, please give the quote, page number and source citation.

Problem	Point Value	Your score	Topic
1	28		Discrete-Time Filter Analysis
2	24		Improving Signal Quality
3	24		Filter Bank Design
4	24		Potpourri
Total	100		

Problem 1.1 Discrete-Time Filter Analysis. 28 points.
A causal stable discrete-time linear time-invariant filter with input $x[n]$ and output $y[n]$ is governed by the following transfer function:

$$
H(z)=C \frac{\left(z-z_{0}\right)\left(z-z_{1}\right)}{\left(z-p_{0}\right)\left(z-p_{1}\right)}=C \frac{\left(1-z_{0} z^{-1}\right)\left(1-z_{1} z^{-1}\right)}{\left(1-p_{0} z^{-1}\right)\left(1-p_{1} z^{-1}\right)}
$$

Constant C is real-valued and is not equal to zero. Zero locations are z_{0} and z_{1}. Pole locations are p_{0} and p_{1} where $\left|p_{0}\right|<1$ and $\left|p_{1}\right|<1$.
(a) From the transfer function, give formulas for the feedforward coefficients and the feedback coefficients in terms of the pole locations, zero locations and constant C. 6 points.
(b) Give the difference equation relating input $x[n]$ and output $y[n]$ in terms of the feedforward and feedback coefficients. 6 points.
(c) What are the initial condition(s)? What value(s) should they be assigned and why? 4 points.
(d) Draw a block diagram for the filter. 6 points.
(e) For zeros $z_{0}=-1$ and $z_{1}=-1$ and poles $p_{0}=0.9$ and $p_{1}=0$, draw the pole-zero diagram. What is the best description of the frequency selectivity of the filter: lowpass, highpass, bandstop, bandpass, allpass or notch? 6 points.

Problem 1.2 Improving Signal Quality. 24 points.
In smart grids, communication between customer power meters and the local utility can occur over the (outdoor) power line:

- Transmission band: $40-90 \mathrm{kHz}$
- Sampling rate: 400 kHz

Consider the following sources of distortion:

- Additive noise
- Narrowband interferer at 50 kHz

Consider the following cascade of filters in the receiver to improve signal quality:

(a) Design a sixth-order finite impulse response (FIR) filter to reduce out-of-band additive noise by manually placing zeros on the pole-zero diagram below. 9 points.

(b) Design an infinite impulse response (IIR) filter biquad to remove the 50 kHz interferer.
i. Give formula for discrete-time frequency ω_{0} in rad/sample of the interferer. 3 points.
ii. Give formulas for the two poles and the two zeros as functions of $\omega_{0} .6$ points.
(c) How many instruction cycles on the TI TMS3206748 digital signal processor used in lab will take to compute one output sample $y[n]$ given one input sample $x[n]$? 6 points.

Problem 1.3 Filter Bank Design. 24 points.
Show on the right is a bank of N filters to decompose signal $x[n]$ into N frequency bands.

Each filter has a finite impulse response (FIR):

- Filter $h_{0}[n]$ is lowpass.
- Filter $h_{N-1}[n]$ is highpass.
- All other filters are bandpass.

Each FIR filter has N coefficients.
(a) Let filter $h_{0}[n]$ be an averaging filter. 6 points.

i. What is the null bandwidth? Why?
ii. What is the group delay? Why?
(b) Derive the filter $h_{N-1}[n]$ from $h_{0}[n]$ in part (a). 9 points.
i. With $g[n]=(-1)^{n}$, show that $h_{N-1}[n]=g[n] h_{0}[n]$ is highpass.
ii. What is the group delay? Why?
(c) For the case $N=3$, derive $h_{l}[n]$ from $h_{0}[n]$ in part (a). 9 points.
i. Give $g_{l}[n]$ so that $h_{l}[n]=g_{l}[n] h_{0}[n]$ is a bandpass filter centered at $\pi / 2$.
ii. What is the group delay? Why?

Problem 1.4. Potpourri. 24 points.
(a) Assuming the use of an analog-to-digital converter at the front end of a signal processing system, what are the design tradeoffs in a signal processing system when increasing the sampling rate beyond twice the maximum frequency of interest with respect to
i. Signal quality. 6 points.
ii. Implementation complexity. 6 points.
(b) Due to certain digital signal processing operations, esp. in communication systems, signals can have a large DC offset. This is a particular problem when implementing a system in fixed-point (integer) data and arithmetic. How would you suggest removing the DC offset? 6 points.
(c) You are asked to design a discrete-time bandpass filter to pass subwolfer frequencies (20200 Hz) in a digital audio signal that has been sampled at 44.1 kHz . Would you advocate using a finite impulse response (FIR) filter or an infinite impulse response (IIR) filter? Why? 6 points.

