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• The exam is scheduled to last 50 minutes. 
• Open books and open notes.  You may refer to your homework assignments and the 

homework solution sets. 
• Calculators are allowed. 
• You may use any standalone computer system, i.e. one that is not connected to a network.  

Please disable all wireless connections on your computer system(s). 
• Please turn off all cell phones. 
• No headphones allowed. 
• All work should be performed on the quiz itself.  If more space is needed, then use the 

backs of the pages. 
• Fully justify your answers.  If you decide to quote text from a source, please give the 

quote, page number and source citation. 
 
 
 
 

Problem Point Value Your score Topic 
1 28  Filter Analysis 
2 24  Sampling & Aliasing 
3 24  Filter Design 
4 24  Potpourri 

Total 100   
 

 



Problem 1.1 Filter Analysis.  28 points.  
Consider the following causal linear time-invariant (LTI) discrete-time 
filter with input x[n] and output y[n] described by 

 y[n] = a x[n] + b x[n-1] – b x[n-2] – a x[n-3] 
for n ≥ 0, where a and b are real-valued positive coefficients. 
(a) Is this a finite impulse response (FIR) or infinite impulse response (IIR) filter?  Why?  3 points. 

FIR filter.  Any of the following reasons would provide sufficient justification: 
1. The impulse response extends for 4 samples from n = 0 to n = 3, which is finite in duration. 
2. The output y[n] does not depend on previous output values; i.e., there is no feedback. 
3. In the transfer function in the z-domain in part (d), the only poles are trivial poles at z = 0. 

(b) What are the initial conditions and their values?  Why?  6 points. 
Let n=0:  y[0] = a x[0] + b x[-1] – b x[-2] – a x[-3].  
Let n=1:  y[1] = a x[1] + b x[0] – b x[-1] – a x[-2]. 
Let n=2:  y[2] = a x[2] + b x[1] – b x[0] – a x[-1].   Etc. 
Initial conditions are x[-1], x[-2], x[-3] and must be zero for linearity and time-invariant 
properties to hold.  Note that x[0] is the first input value and not an initial condition. 
Note: A causal system does not depend on future input values or future output values. 

(c) Draw the block diagram of the filter relating input x[n] and output y[n]. 6 points. 

 
(d) Derive a formula for the transfer function in the z-domain and the region of convergence.  4 points. 

Z-transform both sides of difference equation, knowing that all initial conditions are zero: 
Y(z) = a X(z) + b z -1 X(z) – b z -2 X(z) – a z -3 X(z)  which means 

 𝑯 𝒛 = 𝒀(𝒛)
𝑿(𝒛)

= 𝒂+ 𝒃 𝒛!𝟏 − 𝒃 𝒛!𝟐  − 𝒂 𝒛!𝟑 for 𝒛 ≠ 𝟎 

(e) Give a formula for the discrete-time frequency response of the filter.  3 points. 
We can convert the transfer function H(z) into the discrete-time frequency domain by 
substituting z = exp(j ω) because FIR LTI systems are always Bounded-Input Bounded-
Output stable, or equivalently, because the region of convergence includes the unit circle: 
𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝑯(𝒛) 𝒛!𝒆𝒋𝝎 = 𝒂+ 𝒃 𝒆!𝒋𝝎 − 𝒃 𝒆!𝟐𝒋𝝎 − 𝒂 𝒆!𝟑𝒋𝝎 

(f) Give a formula for the phase response vs. discrete-time frequency and the group delay vs. discrete-
time frequency. Does the filter have linear phase over all frequencies?  Why or why not?  6 points. 

𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝒆!𝒋
𝟑
𝟐𝝎 𝒂 𝒆𝒋

𝟑
𝟐𝝎  + 𝒃 𝒆𝒋

𝝎
𝟐 − 𝒃 𝒆!𝒋

𝝎
𝟐 − 𝒂 𝒆!𝒋

𝟑
𝟐𝝎 = 𝟐 𝒂 𝐬𝐢𝐧

𝟑
𝟐𝝎 + 𝒃 𝐬𝐢𝐧

𝝎
𝟐  𝒋 𝒆!𝒋

𝟑
𝟐𝝎 

With 𝒋 = 𝒆𝒋
𝝅
𝟐 , ∠𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝝅

𝟐
− 𝟑

𝟐
𝝎  except for phase jumps (discontinuities) of π  at frequencies 

that are zeroed out, which is generalized linear phase.  𝑮𝑫 𝝎 = − 𝒅
𝒅𝝎
∠𝑯𝒇𝒓𝒆𝒒 𝝎 = 𝟑

𝟐
 𝐬𝐚𝐦𝐩𝐥𝐞𝐬.    

Note: The three initial conditions are 
visible here as the initial condition for 
each unit delay block. 

HW 1.1 2.1 2.2. 2.3 & 3.2 
Lab #3 Lectures 3 5 & 6 

JSK Ch. 7 

Lecture slide 5-11 
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Lecture slides 3-15 & 5-4 

Lecture slides 5-15 & 5-18 

Fall 2016 Midterm 1 Prob 1 

Spring 2013 Midterm 1 Prob 1(f) Fall 2013 Midterm 1 Prob 3(b) 



Problem 1.1 Supplemental information not expected for students to have provided in their answers. 
Matlab plots using freqz( [a b -b -a] ) for a = 1 and b = 2 (left) and a = 2 and b = 1 (right) 

 
 

  



Problem 1.2 Sampling and Aliasing.  24 points.  
A frequency of 46 kHz is higher than the normal audible range of 20 Hz 
to 20 kHz for a human being. 

Consider a continuous-time signal x(t) = cos(2 π f0 t) where f0 = 46 kHz. 

Sample the signal using a sampling rate of fs = 48 kHz. 
(a) Derive a formula for the discrete-time signal x[n] that results from sampling x(t).  3 points. 

Sampling in the time domain can be modeled as an instantaneous closing and opening of a 
switch. Each time that the switch is closed, the input is gated to the output.  In practice, this 
could be implemented by a pass transistor with a sampling clock feeding the gate terminal. 

𝒙 𝒏 = 𝒙 𝒕 |𝒕!𝒏𝑻𝒔 = 𝐜𝐨𝐬 𝟐 𝝅 𝒇𝟎 𝒏 𝑻𝒔 =  𝐜𝐨𝐬 𝟐 𝝅 𝒇𝟎  
𝒏
𝒇𝒔

= 𝐜𝐨𝐬 𝟐𝝅
𝒇𝟎
𝒇𝒔

𝒏  

The discrete-time frequency corresponding to continuous-time frequency f0 is 𝝎𝟎 = 𝟐𝝅 𝒇𝟎
𝒇𝒔

 
(b) Using only analysis of x[n] in the discrete-time domain, determine the discrete-time frequency to 

which the continuous-time frequency of f0 will alias.  6 points. 

𝒙 𝒏 = 𝐜𝐨𝐬 𝟐𝝅
𝒇𝟎
𝒇𝒔

𝒏 = 𝐜𝐨𝐬 𝟐𝝅
𝟒𝟔 𝐤𝐇𝐳
𝟒𝟖 𝐤𝐇𝐳 𝒏 = 𝐜𝐨𝐬 𝟐𝝅

𝟐𝟑 
𝟐𝟒 𝒏  

We can subtract an offset in the argument of 2 π  n without changing x[n]: 

𝐜𝐨𝐬 𝟐𝝅
𝟐𝟑
𝟐𝟒 𝒏− 𝟐𝝅𝒏 = 𝐜𝐨𝐬 𝟐𝝅

𝟐𝟑
𝟐𝟒− 𝟏 𝒏 = 𝐜𝐨𝐬 𝟐𝝅 −

𝟏
𝟐𝟒 𝒏 = 𝐜𝐨𝐬 𝟐𝝅

𝟏
𝟐𝟒 𝒏  

Continuous-time frequency of f0 will alias to a discrete-time frequency of 𝟐𝝅 𝟏
𝟐𝟒

 rad/sample. 

(c) What is the equivalent continuous-time frequency for the aliased discrete-time frequency in (b)? 
6 points. 
With 𝝎𝟏 = 𝟐𝝅 𝒇𝟏

𝒇𝒔
 and fs = 48 kHz, f1 = 2 kHz. 

(d) Using only analysis in the continuous-time frequency domain of sampling applied to x(t), 
determine the continuous-time frequency to which the continuous-time frequency f0 will alias.  The 
answer should be the same as part (c).  6 points. 

In the time domain, we model instantaneous gating of input to output every Ts seconds as a 
multiplication of the input signal by an impulse train with impulses every Ts seconds. The 
output spectrum is the convolution of the input spectrum and an impulse train with impulses 
separated by fs with area fs. In the frequency domain, sampling creates replicas of the input 
spectrum at offsets of integer multiples of fs. The Fourier transform of cos(2 π  f0 t) is 
𝟏
𝟐
𝜹 𝒇+ 𝒇𝟎 + 𝟏

𝟐
𝜹 𝒇− 𝒇𝟎 .  Replicas are shown as dashed impulses below.  Reconstructed 

frequencies are from -½ fs to ½ fs and hence the aliased continuous-time frequency is 2 kHz. 

 
(e) Is the aliased frequency audible?  3 points. 

Yes, the aliased frequency of 2 kHz is in the audible range of 20 Hz to 20 kHz.  

HW 0.1 0.2 0.3 
Lab #2 Lecture 1 & 4 

Fall 2016 Midterm 1 Prob 2 

March 11th Lecture 



Problem 1.2 Supplemental information not expected for students to have provided in their answers. 
Matlab code to show aliasing in the time domain 

Plot x(t) = cos(2 π  f0 t) 

 
Plot samples x(n Ts) superimposed on 
x(t) = cos(2 π  f0 t) 

 
Plot x1(t) = cos(2 π  f1 t) and x(n Ts)  
superimposed on x(t) = cos(2 π  f0 t) 

 

%% Part 1: Define Signals 
wHat = 2*pi*(1/24); 
nmax = 24; 
n = 0:nmax; 
x1 = cos(wHat*n); 
x = cos(2*pi*(23/24)*n); 
 
fs = 1;     %% fs=1 to align DT and CT 
f1 = 2/48;  %% Actual fs goes in denom 
w1Hat = 2*pi*f1/fs; 
period = round(fs/f1); 
f0 = 46/48; %% Actual fs goes in denom 
w0Hat = 2*pi*f0/fs; 
Ts = 1/fs; 
tmax = (nmax/period)*(1/f1); 
t = 0 : (Ts/100) : tmax; 
x1cont = cos(2*pi*f1*t); 
xcont = cos(2*pi*f0*t); 
  
%% Part 2: Generate Plots 
figure; 
plot(t, xcont, 'm-', 'LineWidth', 1); 
  
figure; 
plot(t, xcont, 'm-', 'LineWidth', 1); 
hold; 
stem(n, x1, 'Linewidth', 2, 
'MarkerEdgeColor', 'black'); 
stem(n, x, 'Linewidth', 2, 
'MarkerEdgeColor', 'black'); 
  
figure; 
plot(t, xcont, 'm-', 'LineWidth', 1); 
hold; 
stem(n, x1, 'Linewidth', 2, 
'MarkerEdgeColor', 'black'); 
stem(n, x, 'Linewidth', 2, 
'MarkerEdgeColor', 'black'); 
plot(t, x1cont, 'b-', 'LineWidth', 2); 
 



Problem 1.3 Filter Design.  24 points.  
An electrocardiogram (ECG) device records the heart’s electrical potential versus time for monitoring 
heart health and diagnosing heart disorders. [1] 
Use a sampling rate fs of 240 Hz for the continuous-time ECG signal for a monitoring application. [1] 

Design a third-order discrete-time infinite impulse response (IIR) filter to remove baseline wander 
noise below 0.5 Hz and powerline interference at 60 Hz in an ECG signal. [1] 

Baseline wander noise is induced by electrode changes due to perspiration, movement and respiration. 
The third-order discrete-time IIR filter will be a cascade of a first-order and a second-order section. 

(a) Design a first-order discrete-time IIR filter to remove DC (0 Hz) but pass as many of the other 
frequencies as possible with a gain of one in linear units.  Please give the pole, zero, and gain. 
6 points. 
Pole p0 = 0.95 and zero z0 = 1. 
𝑯𝟎 𝒛 = 𝑪𝟎  𝟏!𝒛𝟎𝒛

!𝟏

𝟏!𝒑𝟎𝒛!𝟏
= 𝑪𝟎  𝒛!𝒛𝟎

𝒛!𝒑𝟎
 

Set H0(z) = 1 at z = exp(j π) = -1 to give C0 = 0.975. 
(b) Design a second-order discrete-time IIR filter to remove 60 Hz but pass as many of the other 

frequencies as possible with a gain of one in linear units.  Please give the two poles, two zeros, and 
gain.  6 points.  
𝝎𝟔𝟎 = 𝟐𝝅 𝒇𝟔𝟎

𝒇𝒔
= 𝟐𝝅 𝟔𝟎 𝑯𝒛

𝟐𝟒𝟎 𝑯𝒛
= 𝝅

𝟐
 

Poles and zeros are at the same angle ω60 

Poles at 𝒑𝟏 = 𝟎.𝟗 𝒆𝒋 𝝎𝟔𝟎 = 𝒋𝟎.𝟗 and 𝒑𝟐 = 𝟎.𝟗 𝒆!𝒋 𝝎𝟔𝟎 = −𝒋𝟎.𝟗 

Zeros at 𝒛𝟏 = 𝒆𝒋 𝝎𝟔𝟎 = 𝒋 and 𝒛𝟐 = 𝒆!𝒋 𝝎𝟔𝟎 = −𝒋 

𝑯𝟏 𝒛 = 𝑪𝟏  
𝟏− 𝒛𝟏𝒛!𝟏 𝟏− 𝒛𝟐𝒛!𝟏

𝟏− 𝒑𝟏𝒛!𝟏 𝟏− 𝒑𝟐𝒛!𝟏
 

Normalize H1(z) = 1 at z = exp(j 0) = 1 to give C0 = 0.905.  
(c) Plot the poles and zeros for the third-order 

discrete-time IIR filter on the right.  The circle on 
the right has a radius of 1.  6 points. 
 

(d) What is the response of the discrete-time IIR filter 
to continuous-time frequencies in the ECG signal 
that are odd harmonics of 60 Hz, i.e. 180 Hz, 300 
Hz, etc.?  Why?  6 points. 
When sampled at the sampling rate of 240 Hz, 
continuous-time frequencies that are odd 
harmonics of 60 Hz will alias to the discrete-
time frequency ω60, and hence will be zeroed 
out by the discrete-time IIR filter.  

Re(z) 

Im(z) 

[1] Yong Lian and Jianghong Yu, "A Low Power Linear Phase Digital FIR Filter for Wearable ECG Device", Proc. 
IEEE Int. Conf. on Engineering in Medicine and Biology Society, pp. 7357-7360, 2005.  
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Spring 2016 Midterm 1 Prob 1 

Lecture Slide 6-6 
HW 3.1(c) 

Lecture Slide 6-7 Filter Demos 

Spring 2014 Midterm 1 Prob 2(b) 
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X 

X 

O 

O 

O 

Fall 2014 Midterm 1 Prob 3 notch 



Problem 1.3 Supplemental information not expected for students to have provided in their answers. 
 
Matlab code to specify and analyze the discrete-time IIR filter.  
 
%% Zeros 
z0 = 1; 
z1 = j; 
z2 = -j; 
%% Poles 
p0 = 0.9; 
p1 = 0.9j; 
p2 = -0.9j;  
%% Gains for each stage 
C0 = 0.975; 
C1 = 0.905; 
%% Expand factors to coefficents 
zeros = [z0 z1 z2]; 
poles = [p0 p1 p2]; 
feedforwardCoeffs = C0*C1*poly(zeros); 
feedbackCoeffs = poly(poles); 
%% Filter frequency response 
freqz( feedforwardCoeffs, feedbackCoeffs ); 

 
  



Problem 1.4.  Potpourri.  24 points.  
(a) A discrete-time signal with sampling rate of fs of 8000 Hz has the following “UX” spectrogram.  

The spectrogram was computed using 1000 samples per block and an overlap of 900 samples. 
i. Describe frequency components vs. time.  6 points. 

By using the intensity scale shown to the right of 
the spectrogram plot: 
t = 0.5s : all frequencies present 
0.5s < t < 1.5s : Low frequencies 0 to 0.1 kHz 

continuously present (in white) plus six less 
intense short bursts of frequencies 0 to 1 kHz 
equally spaced in time (short rect. pulses) 

t = 1.5s : all frequencies present 
2.5s < t < 3.5s : chirp increasing from 0 to ½fs 

plus a chirp decreasing from ½fs to 0 
ii. What would the signal sound like when played as audio signal?  6 points. 

0.5s < t < 1.5s : Bass tones 20-100 Hz plus lower intensity 0-1 kHz freq. repeated 6 times 
2.5s < t < 3.5s : Note increasing 0 to 4 kHz, and note decreasing 4 to 0 kHz, with time 

(b) Consider an unknown causal, time-varying, nonlinear, discrete-time system with input x[n] and 
output y[n].  We will model the system as a discrete-time linear time-invariant (LTI) finite impulse 
response (FIR) filter.  Find the FIR coefficients. 
i. Give a formula for a finite-length input signal other than an impulse that contains all 

frequencies. 3 points.  

The discrete-time frequency domain has period 2π . 

Input signal x[n] of N samples should contain all discrete-time frequencies 
from -π  to π .  Use a chirp signal that linearly sweeps all frequencies from 0 to π: 

𝒙 𝒏 = 𝐜𝐨𝐬 𝟐𝝅
𝒏
𝟒𝑵 𝒏 = 𝐜𝐨𝐬

𝟐𝝅
𝟒𝑵𝒏

𝟐     𝒇𝒐𝒓 𝒏 = 𝟎,𝟏,… ,𝑵− 𝟏 

ii. Using your answer in part i, derive a time-domain algorithm to estimate the FIR filter 
coefficients.  Your algorithm should also be able to determine how many FIR filter 
coefficients are meaningful.  9 points. 
We base the algorithm on convolution: 

𝒚 𝒏 = 𝒉 𝒏 ∗ 𝒙 𝒏 = 𝒉 𝒌
𝑲!𝟏

𝒌!𝟎

𝒙 𝒏− 𝒌  

For each output value y[n], we’ll have one equation and one unknown h[n]: 
y[0] = h[0] x[0]   solve for h[0] which works as long as x[0] is not zero. 
y[1] = h[0] x[1] + h[1] x[0]    solve for h[1] which works as long as x[0] is not zero 
until |h[n]| < 10 -5 or n = N 

Alternate criterion to |h[n]| < 10 -5: 𝒉 𝒌 𝟐 ≥ 𝟎.𝟗𝑹𝒏
𝒌!𝟎   𝐰𝐡𝐞𝐫𝐞 𝑹 = |𝒚 𝒎 |𝟐𝑵!𝟏

𝒎!𝟎
|𝒙 𝒎 |𝟐𝑵!𝟏

𝒎!𝟎
  

HW 2.1 2.3 3.1 3.2 3.3 Lab #3 
Lectures 1 3 4 5 & 6 

Fall 2017 Midterm 1 Prob 4(a) 
HW 1.2 

In-class discussion Feb. 20th & 25th 
Fall 2013 Midterm 1 Prob 3(a) 

The alternate criterion will be able to handle some of the FIR coefficients values 
being close to zero in absolute value without stopping the update of the 
coefficients. 



Problem 1.4 Supplemental information not expected for students to have provided in their answers  

1.4(a) Matlab code to generate the spectrogram. 
fs = 8000; 
Ts = 1 / fs; 
tmax = 4; 
utSignal = zeros(1, tmax*fs); 
t1sec = 0 : Ts : (1 - Ts); 
%% Spectrogram parameters 
Nfft = 1000; 
Noverlap = 900; 
%% Generate low frequency groups 
f0 = fs / Nfft; 
lowfcosines = zeros(1, length(t1sec)); 
for n = 1 : 10 
  f1 = n*f0; 
  lowfcosines = lowfcosines + cos(2*pi*f1*t1sec); 
end 
%% Create chirp signals 
fstart = 0; 
fend = fs/2; 
fstep = fend - fstart; 
phi = pi*fstep*(t1sec.^2); 
upchirp = cos(2*pi*fstart*t1sec + phi); 
downchirp = cos(2*pi*fend*t1sec - phi); 
%% Draw U into spectrogram 
utSignal(0.5*fs+1:1.5*fs) = lowfcosines; 
%% Draw X into spectrogram 
utSignal(2.5*fs+1:3.5*fs)= upchirp + downchirp; 
%% Plot the spectrogram 
spectrogram(utSignal, hamming(Nfft), Noverlap, Nfft, fs, 'yaxis'); 
colormap bone; 

1.4(a)ii Matlab code to play the signal in the spectrogram in problem 1.4(a) as an audio signal 
soundsc(utSignal, fs); 

1.4(b)i Matlab code to generate chirp 
signal x[n] of N samples in length.  All 
frequencies are present in x[n]. 
N = 10000; 
n = 0 : N-1; 
x = cos(((2*pi)/(4*N))*(n.^2)); 
 
%% Plot frequency content in x 
freqz(x, 1, N); 

1.4(b)ii Although not asked, here are two 
frequency-domain algorithms. 
Algorithm #1: Computer H(z) = Y(z) / X(z), 
take inverse transform to find h[n], and 
truncate h[n] to keep 90% of energy or N 
coefficients, whichever is smaller. 
Algorithm #2:  Similar approach to Algorithm #1 using Hfreq(ω) = Yfreq(ω) / Xfreq(ω). 


